Contract No: EP-W-09-002 WA #: 029-SION-0200

Region 2 RAC2 Remedial Action Contract

Final Phase II Environmental

Site Assessment

ł,

77 Westchester Avenue, Pound Ridge/Scotts Corners Site Targeted Brownfields Assessment

Pound Ridge, New York

July 18, 2017

14 Wall Street, Suite 1702 New York, New York 10005 tel: 212-785-9123 fax: 212-227-1692

July 18, 2017

Ms. Alison Devine Remedial Project Manager U.S. Environmental Protection Agency 290 Broadway, 20th Floor New York, NY 10007-1866

PROJECT:	RAC 2, Region 2 Contract No.: EP-W-09-002 Work Assignment: 029-SION-0200
DOCUMENT NO.:	3323-029-03294
SUBJECT:	Final Phase II Environmental Site Assessment 77 Westchester Avenue, Pound Ridge/Scotts Corners Site Targeted Brownfields Assessments Pound Ridge, New York

Dear Ms. Devine:

CDM Federal Programs Corporation (CDM Smith) is pleased to submit the Final Phase II Environmental Site Assessment conducted at the 77 Westchester Avenue, Pound Ridge/Scotts Corner Site Targeted Brownfields Assessment in Pound Ridge, New York.

If you have any questions regarding this report, please contact me at your earliest convenience at (212) 377-4527.

Very truly yours,

CDM SMITH FEDERAL PROGRAMS CORPORATION

K

Brendan MacDonald, P.E., LEED® AP Site Manager

PSO:

Attachment

cc: F. Rosado, EPA Region 2 (letter only) R. Lyman, Town of Pound Ridge J. Litwin, CDM Smith (letter only) T. Tomaselli, CDM Smith (electronic copy) RAC2 Region 2 Document Control

Table of Contents

Acronyms	v		
Executive Summary ES-1			
Section 1 Introduction	1-1		
1.1 Purpose	1-1		
1.2 Special Terms and Conditions	1-1		
1.3 Limitations, Methodology and Exceptions of Investigation	1-2		
Section 2 Site Description	2-1		
2.1 Site Description	2-1		
2.2 Site History and Land Use	2-1		
2.3 Physical Setting	2-2		
2.3 Adjacent Property Land Use	2-2		
2.4 Summary of Previous Assessments	2-2		
Section 3 Phase II Activities	3-1		
3.1 Scope	3-1		
3.2 Site Access and Reconnaissance	3-2		
3.3 Geophysical Survey	3-3		
3.4 Sampling Activities and Sample Analysis	3-3		
3.4.1 Soil Vapor and Ambient Air Sampling	3-3		
3.4.2 Soil Borings and Subsurface Soil Samples	3-4		
3.4.3 Existing and Temporary Monitoring Well Installation and Sampling	3-4		
3.4.4 Potable Water Sampling	3-5		
3.4.5 Investigative Derived Waste Sampling and Disposal	3-5		
3.5 Deviations from the QAPP	3-5		
Section 4 Summary and Evaluation of Data	4-1		
4.1 Selection of Evaluation Criteria	4-1		
4.2 Soil Sample Results	4-2		
4.2.1 Subsurface Soil Analytical Results	4-2		
4.2.1.1 VOCs	4-2		
4.2.1.2 TPH DRO and GRO	4-2		
4.2.1.3 SVOCs	4-2		
4.2.1.4 PCBs	4-2		
4.2.1.5 Metals	4-2		
4.3 Groundwater and Potable Water Sample Results	4-2		
4.3.1 Existing Monitoring Well and Temporary Well Point Sample Analytical Results	4-2		
4.3.1.1 VOCs	4-3		
4.3.1.2 TPH	4-3		
4.3.1.3 SVOCs	4-3		
4.3.1.4 PCBs	4-3		
4.3.1.4 Metals	4-4		
4.3.2 Potable Water Sample Analytical Results	4-4		

4.3.2.1 VOCs	
4.3.2.2 SVOCs	
4.3.2.3 Metals	
4.4 Soil Vapor and Ambient Air Sample Results	
4.4.1 Soil Vapor Analytical Results	
4.4.1.1 VOCs	
4.4.2 Outdoor Air Analytical Results	
4.4.2.1 VOCs	
4.5 Quality Assurance/Quality Control	
4.6 Evaluation of Recognized Environmental Conditions	
4.6.1 Evaluation of Historic Spills	
(REC-1 – Spill #9412600/9507568, HREC – Spill #020451)	
4.6.2 On-Site Dry Wells (REC-2)	
4.6.2.1 Eastern Dry Well	
4.6.2.2 Western Dry Well	
4.6.3 Potable Water Well Evaluation	
4.6.4 Evaluation of Soil Vapor Intrusion Potential	
Section 5 Conclusions and Recommendations	5-1
5.1 Conclusions	5-1
5.2 Recommendations	5-2
Section 6 References	

List of Tables

Table 3-1	Sample Summary
Table 4-1a	Soil Sample Detections – VOCs
Table 4-1b	Soil Sample Detections – TPH
Table 4-1c	Soil Sample Detections – SVOCs
Table 4-1d	Soil Sample Detections – PCBs
Table 4-1e	Soil Sample Detections – Metals
Table 4-2a	Groundwater Sample Detections – VOCs
Table 4-2b	Groundwater Sample Detections – TPH
Table 4-2c	Groundwater Sample Detections – SVOCs
Table 4-2d	Groundwater Sample Detections – PCBs
Table 4-2e	Groundwater Sample Detections – Metals
Table 4-3a	Potable Water Sample Detections – VOCs
Table 4-3b	Potable Water Sample Detections – SVOCs
Table 4-3c	Potable Water Sample Detections – Metals
Table 4-4	Air Sample Detections – VOCs

List of Figures

- Figure 1-1 Site Location Map
- Figure 3-1 Site Plan and Sampling Locations
- Figure 4-1 Soil and Groundwater Exceedances
- Figure 4-2 Soil Vapor Sample Exceedances

Appendices

- Appendix A Geophysical Investigation Report
- Appendix B Field Log Book
- Appendix C
- Soil Boring Logs Groundwater Sampling Logs Appendix D
- Appendix E Waste Manifests
- Appendix F Data Validation Reports

Acronyms

AAI	All Appropriate Inquiries
AGVs	Air Guideline Values
AWQS	ambient water quality standards
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylene
CCV	Continuing Calibration Verification
CDM Smith	CDM Federal Programs Corporation
CIH	Certified Industrial Hygienist
CRQL	Contract required quantitation limit
Delta	Delta Geophysics Inc.
DER	Division of Environmental Remediation
DPT	direct push technology
DRO	diesel range organics
EES JV	Engineering and Environmental Solutions Joint Venture
EM	Electromagnetic
EPA	United States Environmental Protection Agency
ESA	Environmental Site Assessment
GC/MS	gas chromatography/mass spectrometry
GPR	ground penetrating radar
GRO	gasoline range organics
GPS	Global Positioning System
HASP	health and safety plan
IDW	Investigative derived waste
J	estimated value
J+	biased high estimated value
J-	biased low estimated value
LTR	Land Tech Remedial, Inc.
mg/kg	milligram per kilogram
MS/MSD	matrix spike/matrix spike duplicate
MTBE	methyl tert-butyl ether
No.	number
NYCRR	New York Codes Rules and Regulations
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OSWER	Office of Solid Waste and Emergency Response
PAL	Project Action Limit
PCB	polychlorinated biphenyl
PCE	tetrachloroethene
PID	photoionization detector
ppm	part per million
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan
QC	quality control
REC	recognized environmental condition
KSL	Regional Screening Levels
SCG	Soil Cleanup Guidance

SCO	Soil Cleanup Objectives
SVE/AS	soil vapor extraction/air sparge
SVOC	semi-volatile organic compound
TAL	Target Analyte List
TBA	Targeted Brownfields Assessment
TCL	Target Compound List
TOGS	Technical & Operational Guidance Series
TPH	total petroleum hydrocarbons
µg/L	microgram per liter
µg/m³	micrograms per cubic meter
U	undetected
UJ	undetected estimated
UST	underground storage tank
VOC	volatile organic compound
WCDOH	Westchester County Department of Health
%	percent

This report presents the results of CDM Federal Programs Corporation's (CDM Smith) Phase II Environmental Site Assessment (ESA) for 77 Westchester Avenue, Pound Ridge/Scotts Corners site (the "subject property") located in Pound Ridge, New York. This Phase II ESA was conducted on behalf of the United States Environmental Protection Agency (EPA)to support a Targeted Brownfields Assessment (TBA) request from the Town of Pound Ridge, Contract Number (No.): EP-W-09-002, WA No.: 029-SION-0200. The results of this Phase II ESA will assist the Town of Pound Ridge in identifying areas or contaminants of concern on the property and appropriate options for future commercial use redevelopment.

The subject property is approximately 0.343 acres and is comprised of one tax parcel (parcel No. 9454-9). The subject property is currently owned by John DiFulvio and is improved with a 4,864-square foot, two-story, mixed use building occupied by Pound Ridge Auto Body, Town and Country Auto Repair, with vacant apartments on the second floor. Historically, the property was occupied by a gasoline fueling station from the 1940s or 1950s that closed prior to 2002.

The 2016 Phase II ESA was performed by CDM Smith to investigate and confirm the recognized environmental conditions (RECs) identified by the Phase I ESA conducted by Engineering and Environmental Solutions Joint Venture (EES JV) in March 2016.

The March 2016 Phase I ESA was performed to support the potential redevelopment of the subject property. The Phase I ESA identified three recognized environmental conditions (RECs) for the subject property as detailed below.

- *REC-1 Spill #9412600/9507568:* From 1993 to 1995, the property was investigated in association with a petroleum spill (New York State Department of Environmental Conservation (NYSDEC) Spill #9412600) that originated at a Shell station located downgradient at 66 Westchester Avenue. The subject property was not ruled out as a contributor to the contamination that had been detected in local potable wells. This spill is still open. In 1995, sampling related to Spill #9412600, on the subject property identified six inches of free product in monitoring well (MW-3), and was reported to the (NYSDEC) Spill Hotline. Spill #9507568 was assigned. A soil vapor extraction/air sparge (SVE)/AS system was installed to address the contamination, but was removed based on the reduction of contaminant levels. This spill was closed on March 27, 2013.
- *REC-2 On-Site Dry Wells:* A concealed dry well (eastern dry well) exists in the parking lot to the east of Pound Ridge Auto Body. Floor drains in the garage bay of Pound Ridge Auto Body formerly discharged into the dry well. It is unknown what repair shop chemicals may have been discharged into the dry well. An additional drywell (western dry well) was identified to the northwest of the building during the Phase II ESA and was added to the REC-2 investigation. The subject property owner claimed this well was used for discharge from the laundry machine in the former apartment.

HREC – Spill #020451: Three gasoline USTs and one diesel UST associated with the former fueling station operations were removed in August 2002; one fuel oil UST was abandoned in place. During excavation activities, gasoline contamination was observed in the tank graves. A total of 176 tons of contaminated soil was removed. The spill was closed on November 12, 2002.

To investigate the RECs identified by the Phase I ESA, the following Phase II ESA activities were completed by CDM Smith and their subcontractors in 2016 at the subject property:

- Site Reconnaissance: Existing site features (monitoring wells, septic tanks, etc.) including evidence of former site features (dry wells and soil vapor extraction/air sparge (SVE/AS) system) previously discussed in the Phase I ESA were confirmed during the site reconnaissance.
- *Geophysical Survey:* The survey was conducted using electromagnetic conductivity, GPR and utility detection equipment to identify any subsurface anomalies including underground storage tanks (USTs), septic tanks, buried drums, and utilities. The survey identified an additional dry well on the northwestern side of the site property building.
- Soil Borings: 20 subsurface soil samples were collected from 10 soil boring. Subsurface soil was analyzed for TCL VOCs, semi-volatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH) diesel range organics (DRO), TPH gasoline range organics (GRO), polychlorinated biphenyls (PCBs), and Target Analyte List (TAL) Metals, based on the requirements of each REC.
- Existing Monitoring Well Sampling: Two existing monitoring wells (MW-01 and MW-02), set adjacent to the former USTs located in the southeastern portion of the property, were sampled via low flow sample methodology. The analysis for each groundwater sample was based on the goals of the REC and sample volume available, with TCL VOCs, SVOCs, TPH DRO, TPH GRO, PCBs and TAL metals being the full suite of analysis.
- Installation and Sampling of Temporary Monitoring Wells: Groundwater samples were collected from five temporary monitoring wells. The analysis for each groundwater sample was based on the goals of the REC and sample volume available, with TCL VOCs, SVOCs, TPH DRO, TPH GRO, PCBs and TAL metals being the full suite of analysis.
- Potable Water Sampling: The onsite potable water well was sampled from the tap of a sink within the subject property building. The potable water sample was analyzed for TCL VOCs, SVOCs and TAL metals.
- Soil Vapor and Ambient Air Sampling: Two soil vapor samples and one outdoor ambient air sample were collected within the parking lot adjacent to the subject property building. Soil vapor samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs)

Phase II ESA Conclusions

CDM Smith's conclusions, based on analytical results, historic information, and visual observations are summarized below.

- There is no significant evidence of impacts from the former USTs or other petroleum related sources at the site (REC-1 and HREC). There are low concentrations of TPH GRO and DRO across the subject property in soil and on the southwestern half of the site in groundwater. There are no exceedances of VOCs above 6 NYCRR Part 375-6(b) Restricted Use Commercial, NYSDEC CP-51 supplemental soil cleanup objectives (SCOs) or soil cleanup levels for gasoline or fuel oil contaminated soils.
- The subject property potable water well had exceedances of the NYSDEC ambient water quality standards (AWQS) and EPA RSLs for sodium and antimony, respectively. The potable water well is not currently used for drinking water. Therefore, the exceedances do not present concern.
- Soil and groundwater associated with the eastern former dry well contain TPH DRO and GRO, BTEX (benzene, toluene, ethylbenzene, xylenes), chlorinated benzene compounds, PAHs, PCBs, and metals. These compounds are consistent with the former use of the dry well as the discharge for the rinse sink in the automotive garage. There are no exceedances in soil, but compounds from all analyte groups exceed NYSDEC AWQS in groundwater.
- Soil associated with the western dry well contains TPH DRO and GRO, toluene, PAHs, PCBs, and metals, although the only exceedance of NYSDEC Commercial Use SCOs was barium in one sample, which may be related to the laundry wastewater that discharged into the dry well. There were no exceedances in groundwater associated with this dry well.
- The limitation of groundwater recovery in the temporary wells and MW-2 prevented the characterization of DRO, SVOCs, PCBs, and metals across the site.
- Groundwater samples collected downgradient of former USTs (HREC) indicate that petroleum contamination is still present in low concentrations, however no BTEX or methyl tert-butyl ether (MTBE) was detected in these samples.
- Detections of PCE at concentrations in soil vapor above New York State Department of Health Air Guidance Values (NYSDOH AGVs) suggests there is a potential for soil vapor intrusion of PCE into the building located at 77 Westchester Avenue. Soil and groundwater samples collected throughout the subject property did not yield any detections for PCE. Therefore, PCE impacted soil vapor on the subject property is likely a result of off-site activities.

Recommendations

Based on the results of the Phase II ESA activities and an evaluation of subject property information based on previous environmental investigations, the following recommendations are made:

The exceedances in MW-1 indicate an impact to groundwater associated with the eastern dry well. It is recommended that this groundwater contamination be further characterized to better understand the risks associated with the contamination. CDM Smith recommends groundwater samples be collected on all sides of the dry well and a soil sample be collected through the bottom of the dry well. Insufficient sample volume from MW-2 and temporary wells were a result of poor groundwater volume recovery. Larger diameter permanent

monitoring wells should be installed on the subject property to allow for greater recovery volume and therefore sufficient volume for a full suite of analyses (VOCs, SVOCs, PCBs, Metals, TPH DRO and GRO). This is necessary for a more comprehensive characterization of groundwater impacts associated with the dry wells and the fuel oil UST.

- Should the potable water well on the subject property be used for drinking water in the future, sampling and treatment would be required to ensure water quality meets EPA RSLs and NYSDEC AWQS. Presently a deed restriction should be employed limiting the use of the well to non-potable.
- Shallow soil in the area of the dry well northwest of the building did exhibit barium contamination at levels exceeding Commercial Use SCOs. It is recommended that this covered dry well be excavated or formally abandoned.
- NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH 2006) does not warrant further vapor intrusion investigation. However, if the current use of the building remains and no means of vapor mitigation is employed, the indoor air quality could be confirmed via an indoor air/sub-slab vapor sampling investigation. In the event that the results of such an investigation warrant mitigation, potential exposure could likely be mitigated via installation of a sub-slab depressurization system or retrofitted vapor barrier.

When undertaking subject property development, it is recommended that the developer enlist a professional engineer or scientist to prepare a health and safety plan, construction contingency plans, and a soils management plan, in order to safely and appropriately remove (and control) impacted materials. It is recommended that any work performed at the subject property be performed by an environmental professional (or if necessary a professional engineer) following approved plans and a site-specific health safety plan approved by a certified industrial hygienist (CIH).

In the absence of the limited remediation suggested above, engineering controls should be implemented, requiring that any construction involving the disturbance of soils within the subject property (including non-emergency excavation, which may be part of utility repair or maintenance, or construction) be performed with the involvement of a professional engineer, and be conducted in accordance with local state and federal rules and regulations, providing adequate engineering controls and worker protection. In the absence of remediation, the values of adjacent and surrounding properties may be (and currently be) negatively impacted. The loss of property value may represent some risk to public welfare, yet this risk may not be considered significant risk.

Section 1

Introduction

This report presents the results of CDM Federal Programs Corporation's (CDM Smith) Phase II Environmental Site Assessment (ESA) for the Targeted Brownfield Assessment (TBA) at the 77 Westchester Avenue, Pound Ridge/Scotts Corners site (the "subject property") located in Pound Ridge, New York (**Figure 1-1**). This Phase II ESA was conducted on behalf of the United States Environmental Protection Agency (EPA) as a result of a TBA request from the Town of Pound Ridge.

The subject property is approximately 0.343 acres and is comprised of one tax parcel (parcel No. 9454-9). The subject property is currently improved with a 4,864-square foot, two-story, mixed use building occupied by Pound Ridge Auto Body, Town and Country Auto Repair, with vacant apartments on the second floor. Historically, the property was occupied by a gasoline fueling station from the 1940s or 1950s that closed prior to 2002.

1.1 Purpose

This Phase II ESA was conducted to investigate the potential for contamination associated with the recognized environmental conditions (RECs) identified during the Phase I ESA (March 2016), in addition to site conditions identified during the site reconnaissance performed by CDM Smith (June 2016). The objective of this Phase II ESA was to:

- confirm the presence/absence of previously identified underground storage tanks (USTs) and identify additional potential anomalies on the subject property
- determine if onsite soil and groundwater contamination exists above applicable criteria in areas not previously investigated and confirm the results of previous sampling events
- determine if the potential for soil vapor intrusion into the building on the subject property exists
- determine if conditions at the subject property impacted the potable water well present within the building
- collect hydrogeological information

The Town of Pound Ridge intends to redevelop the property for commercial use, therefore the remediation goal for the property is Restricted Use Commercial.

1.2 Special Terms and Conditions

Special terms and conditions in relation to this project have been addressed throughout various sections of this assessment.

1.3 Limitations, Methodology and Exceptions of Investigation

The Phase II investigation conducted by CDM Smith in September of 2016 was executed in accordance with the following documents:

- "U.S. EPA Region 2 Brownfields Project Planning Guidance" (EPA 2000)
- "Generic Brownfields Quality Assurance Project Plan" (CDM Smith 2008)
- Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites, May 2016 (EPA 2016)
- NYSDEC Division Environmental Remediation (DER)-10 Technical Guidance for Site Investigations and Remediation, May 2010 (DER-10)
- 6 New York Codes Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs
- NYSDEC Technical & Operational Guidance Series (TOGS), Section 1.1.1 Ambient Water Quality Standards & Guidance Values and Groundwater Effluent, June 1998, 2000 and 2004 addendum
- 6 NYCRR Part 703 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations
- "Final Site-Specific Quality Assurance Project Plan (QAPP), 77 Westchester Avenue, Pound Ridge/Scotts Corners Site, Targeted Brownfields Assessment, Pound Ridge, New York" (CDM Smith 2016)
- "Site-Specific Health and Safety Plan (HASP), 77 Westchester Avenue, Pound Ridge/Scotts Corners Site, Targeted Brownfields Assessment, Pound Ridge, New York" (CDM Smith 2016)
- "Final Work Plan, Targeted Brownfields Assessments for Selected Region 2 Brownfields Initiative Sites" (CDM Smith 2010)
- "Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, Designation: E 1903-11" (ASTM International 2000) (Reapproved 2002)
- "Quality Assurance Guidance for Conducting Brownfields Site Assessments" (EPA 1998)

Site assessment activities, including reporting of findings and conclusions, were conducted in accordance with ASTM International site assessment guidance to the extent practicable.

The results for this TBA Phase II ESA are based on a review of available information obtained through a review of historic records, reported spill records, a Phase I ESA report, a site reconnaissance, a geophysical survey, and field sampling analytical data. The Phase II ESA was completed to identify, locate, and characterize contamination present at the subject property. To meet this objective, sample locations were chosen based on the subject property history obtained by CDM Smith. The results of the Phase II ESA only characterize the nature of contamination at the subject property; the ESA has not fully characterized the extent of contamination.

This assessment has been prepared and conducted under the guidance of a qualified environmental professional as defined in New York State Department of Environmental Conservation (NYSDEC)'s DER-10, 40 CFR Part 312, Standards and Practices for All Appropriate Inquiries (AAI) and ASTM E1903-11. The conclusions represent CDM Smith's professional opinions based on these aforementioned sources of information. A Phase II investigation is not a comprehensive site characterization or regulatory compliance audit, and should not be construed as such. CDM Smith cannot represent that the subject property contains no hazardous or toxic materials, products, or other latent conditions beyond those observed during the ESA. Further, the services herein shall not be construed, designed or intended to be relied upon as legal interpretation or advice. This report was prepared for the exclusive use by EPA, and is not intended for use by any other parties. Use of this report by any other party is at their sole risk without liability to CDM Smith.

This page intentionally left blank.

Section 2

Site Description

2.1 Site Description

The subject property is currently owned by Mr. John DiFulvio and is located at 77 Westchester Avenue in the Town of Pound Ridge, Westchester County, New York. The subject property is 0.343 acres with the south side of the parcel bordered by Westchester Avenue. The subject property is identified as tax parcel 9454-9. The subject property is zoned as PB-A, which is maintained as "planned business" zoning. **Figure 3-1** depicts the Site Plan.

2.2 Site History and Land Use

The subject property is mainly comprised of a single 4,864-square foot, two-story, mixed use building. The first floor of the building has two automobile repair garages maintained by Pound Ridge Auto Body and Town and Country Auto Repair. The second floor of the building contains a vacant three-bedroom apartment. Historically, the property was occupied by a gasoline fueling station from the 1940s or 1950s and closed prior to 2002 when the last of the USTs were removed/decommissioned.

From 1993-1995, the property was investigated in association with a petroleum spill (#9412600) that originated at a Shell station located downgradient at 66 Westchester Avenue. The subject property was not ruled out as a contributor to the contamination that had been detected in local potable wells. This spill is still open.

In 1995, six inches of free product were observed in an existing monitoring well (MW-3) at the subject property. The presence of separate phase product in the well was reported to the NYSDEC Spill Hotline and Spill #9507568 was assigned. A soil vapor extraction/air sparge (SVE/AS) system was installed to address onsite contamination. The system operated for an unknown length of time and was removed based on the reduction of contaminant levels. No documentation of the contaminant levels reached was available. This spill was closed on March 27, 2013.

Three gasoline USTs (two 6,000 and one 4,000 gallon) and one diesel UST (one 4,000 gallon) associated with former fueling station operations were removed in August 2002; in addition, one fuel oil UST was abandoned in place in the garage attached to the back of Pound Ridge Auto Body. During excavation activities, gasoline contamination was observed in the tank graves and NYSDEC Spill #020451 was assigned. 176 tons of contaminated soil were removed. This spill was closed on November 12, 2002.

A dry well exists in the parking lot to the east of Pound Ridge Auto Body, which has been abandoned and sealed with concrete. According to the subject property owner, floor drains in the garage bays of Town and Country Repair Shop and Pound Ridge Auto Body formerly discharged into the dry well. It is unknown what repair shop chemicals may have discharged into the dry well.

The property utilizes a potable well which currently only supplies water to a single sink in Pound Ridge Auto Body. This sink is only used for handwashing. The operator of Pound Ridge Auto Body indicated that it is not used for drinking water.

2.3 Physical Setting

The property is flat and mostly paved, however, the local topography slopes to the southwest. From the subsurface investigations, soil types at the subject property were generally consistent. The first few feet of soil encountered at the subject property is generally brown silty sand and gravel fill material. Underlying the fill material to the water table, at approximately 10 feet bgs (below ground surface), the soil is gray to brown silt and sand. Soil encountered below the water table to the top of bedrock generally remains silt and sand, and becomes more gravel-rich with depth. Bedrock is situated approximately 15 feet bgs. Due to the shallow water table it is estimated that groundwater flows to the west-southwest in the direction of local topography.

2.3 Adjacent Property Land Use

The subject property is primarily surrounded by mixed use residential and some commercial parcels in a downtown area. This area is referred to as Scotts Corners. The immediate surrounding area is a small downtown retail strip in a rural residential community. The subject property is bordered by Westchester Avenue to the south, a vacant commercial building to the east, a Town of Pound Ridge owned parking lot to the north, and residential properties to the west. Subject property access is unrestricted and can be gained from the south via Westchester Avenue and from the north by the Town-owned parking lot.

2.4 Summary of Previous Assessments

In February 1995, Land Tech Remedial, Inc. (LTR) performed a subsurface investigation on behalf of NYSDEC for the properties at 66 Westchester Avenue and the subject property (77 Westchester Avenue). The investigation was meant to determine the source(s) of gasoline constituents detected in various potable water wells located within the area. During the investigation three overburden monitoring wells (MW-1, MW-2, and MW-3), and two bedrock monitoring wells (MW-A and BR-1) were installed and 33 groundwater screening borings were advanced in the vicinity of the subject property. All samples were analyzed for volatile organic compounds (VOCs).

As a result of benzene, toluene, ethylbenzene, and xylene(BTEX) and methyl tert-butyl ether (MTBE) contamination in overburden groundwater identified during the subsurface investigation, LTR installed and provided the operations and maintenance of a soil SVE/AS system. The system, installed in 1995, consisted of five soil vapor extraction points and five air sparge points to remediate petroleum contamination at the subject property. It is unknown when the system was decommissioned.

The March 2016 Phase I ESA was performed to support the potential redevelopment of the subject property. The Phase I ESA identified three RECs for the subject property as detailed below.

- REC-1 Spill #9412600/9507568: From 1993 to 1995, the property was investigated in association with a petroleum spill (NYSDEC Spill #9412600) that originated at a Shell station located downgradient at 66 Westchester Avenue. The subject property was not ruled out as a contributor to the contamination that had been detected in local potable wells. This spill is still open. In 1995, sampling on the subject property related to Spill #9412600 identified six inches of free product in monitoring well (MW-3). This finding was reported to the NYSDEC Spill Hotline. Spill #9507568 was assigned. A soil SVE/AS system was installed to address the contamination but was removed based on the reduction of contaminant levels. This spill was closed on March 27, 2013.
- **REC-2** On-Site Dry Wells: A concealed dry well (eastern dry well) exists in the parking lot to the east of Pound Ridge Auto Body. Rinse water from cleaning with degreasers was discharged to this dry well. Westchester County Health Department notified NYSDEC in a letter on July 1, 2002. The letter required ceasing discharge to the dry well and sealing the sink. The property owner reported that the sink and associated piping were removed and the dry well was plugged on July 10th. Floor drains in the garage bay of Pound Ridge Auto Body formerly discharged into the dry well; it is unknown what repair shop chemicals may have been discharged into the dry well. An additional drywell (western dry well) was identified to the northwest of the building during the Phase II ESA and was added to the REC-2 investigation. The subject property owner claimed this well was used for discharge from the laundry machine in the former apartment.
- Historical Recognized Environmental Condition (HREC) Spill #020451: Three gasoline USTs and one diesel UST associated with the former fueling station operations were removed in August 2002; one fuel oil UST was abandoned in place. During excavation activities, gasoline contamination was observed in the tank graves. A total of 176 tons of contaminated soil was removed. The spill was closed on November 12, 2002.

This page intentionally left blank.

Section 3

Phase II Activities

3.1 Scope

CDM Smith performed a Phase II ESA at the subject property in September 2016 to investigate the RECs identified during the Phase I ESA. The activities performed as part of this Phase II ESA included:

- Preparing of a Site-Specific quality assurance project plan (QAPP)
- Preparing of a Site-Specific health and safety plan (HASP)
- Conducting a field planning meeting on September 2, 2016
- Site Reconnaissance
- Site Investigation:
 - *Geophysical Survey*: An Electromagnetic (EM) 31 and Ground Penetrating Radar (GPR) survey was performed by Delta Geophysics Inc. (Delta) of the property to identify any subsurface anomalies including USTs, buried pipes, utilities and to clear soil boring locations. The survey was conducted using electromagnetic conductivity, GPR and utility detection equipment.
 - *Soil Vapor and Ambient Air Sampling*: Two soil vapor samples (SV-01 and SV-02) and one outdoor air sample (AO-01) were collected within the parking lot adjacent to the subject property building. All air samples were collected via Summa Canister. Soil vapor samples were collected at a depth of approximately 8 feet bgs (2 feet above the water table).
 - *Soil Borings*: Ten direct push technology (DPT) soil borings (SB-01, SB-03 through SB-11) were advanced by Talon Drilling Company and sampled by CDM Smith. Borings were advanced to a maximum depth of 15 feet. A total of 20 subsurface soil samples were collected from the 10 soil boring locations. Each soil boring had one sample collected from 0 to 2 feet bgs and one sample collected for the interval immediately above the groundwater table. The locations selected for soil sampling were based on RECs and field observations. Lithologic logging, visual and olfactory observations, and photoionization (PID) field screening of subsurface soil samples were used to characterize environmental media and aid in the determination of sample collection and depth..
 - *Existing Monitoring Well Sampling*: Two existing monitoring wells (MW-1 and MW-2), set adjacent to the former USTs located in the southeastern portion of the property, were sampled via low flow and grab sample methodology. The existing monitoring wells ranged in depth from 12 to 20 feet bgs.

- *Installation and Sampling of Temporary Groundwater Monitoring Wells*: Four temporary groundwater monitoring wells (GW-01, GW-05, GW-09, and GW-11) were advanced and installed by Talon Drilling Company while CDM Smith provided oversight. The temporary monitoring wells ranged in depths from 12.3 to 13.4 feet bgs. Groundwater samples were collected via low flow and grab sample methodology.
- *Potable Water Sampling*: The onsite potable water well was sampled from the tap of a sink present within the subject property building. Prior to sampling water was allowed to flow from the sink until the water tank volume was replaced.

All samples were analyzed by RTI Laboratories, a subcontractor laboratory. Soil vapor samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs). Subsurface soil was analyzed for TCL VOCs, semi-volatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH) diesel range organics (DRO), TPH gasoline range organics (GRO), polychlorinated biphenyls (PCBs), and Target Analyte List (TAL) Metals. Groundwater samples were analyzed for TCL VOCs, SVOCs, PCBs, TPH DRO, TPH GRO, and TAL metals, with exceptions due to lack of volume from slow recharge. The potable water sample (PW-01) was analyzed for TCL VOCs, and TAL metals.

3.2 Site Access and Reconnaissance

A site reconnaissance was performed by CDM Smith in June 2016. During the reconnaissance, CDM Smith observed the following:

- The subject property building, at 77 Westchester Avenue is currently in use by two businesses, Pound Ridge Auto Body and Town & Country Auto Repair.
- A diagonal pavement cut/patch, observed in the front parking lot, is most likely from the former SVE/AS system.
- Topography is generally flat with the surrounding area sloping to the southwest.
- There is a private well on the subject property located on the southwest corner of the building. The plumbing from the well leads to a pressure tank in a rear utility room. The pressure tank is not filtered and supplies the sink in the business in the building. The sink is used for handwashing only and not drinking water. There is also a sump pump in the utility room.
- MW-1, MW-2, MW-3, MW-4, BR-2, and MW-A wells were located.
- The location of the former dry well and floor drains in Pound Ridge Auto Body were located.
- The abandoned-in-place fuel oil UST in the rear garage was located as an L-shaped patch.
- A private septic tank is located at the rear (northeast) corner of the building

3.3 Geophysical Survey

A geophysical survey was performed by Delta Geophysics on August 16, 2016 to identify subsurface anomalies including USTs, buried pipes, and utilities. The survey is presented in **Appendix A** and is summarized below:

- A GPR survey was conducted using a Geophysical Survey System Inc. SIR-3000 cartmounted GPR unit, a Radiodetection RD7000 precision utility detector, a Fisher M-Scope TW-6 magnetic locator, a Genomics EM-61 Mark II-time domain metal detector, and a Trimble Global Positioning System (GPS) Pathfinder Pro XRS.
- GPR anomalies identified disturbed soil in the parking lot in the area of the former UST graves.
- Two magnetic anomalies were identified to the west of the building. One of these anomalies revealed an additional drywell under a metal plate. The subject property owner claimed this was used for discharge from the laundry machine in the former apartment. This dry well was investigated using additional borings added to the sampling program and will be discussed as a part of REC-2 in Section 4.6.2.
- The floor drain in Pound Ridge Auto Body and the associated dry well to the east of the building were identified. No floor drain was identified in Town & County Auto Repair.
- The abandoned-in-place UST was identified as a former excavation but removal/in-place abandonment was not confirmed due to the disturbance from the reinforced concrete floor.
- All accessible areas within the survey areas were examined during this investigation.
 Based on the data gathered, the following utilities were detected: water, gas, sanitary sewer and storm sewer. All detected utilities were marked onsite with appropriate colors.
 Anomalous features and unknown utilities were marked onsite in pink.

3.4 Sampling Activities and Sample Analysis

Field log book notes and sampling information recorded during investigation activities are provided in **Appendix B**. Sample locations are shown on **Figure 3-1** and a summary of the samples collected and sample parameters are presented in **Table 3-1**. Sampling locations and analytical parameters were selected based on the potential contaminants of concern in the RECs identified during the Phase I ESA, previous environmental sample locations, and evidence of staining. Analytical results are discussed in Section 4.

3.4.1 Soil Vapor and Ambient Air Sampling

Two soil vapor samples (SV-01 and SV-02) and one outdoor air sample (A0-01) were collected according to the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (New York State Department of Health (NYSDOH) 2006) on September 12, 2016 to determine if the potential for soil vapor intrusion into the onsite building exists. The samples were collected using 1.4 liter Summa canisters over 30 minutes, and helium tracer tests were performed at both locations. The soil vapor samples were taken at a depth of eight feet bgs (approximately two feet above the water table). Soil vapor samples were collected within the parking lot adjacent to the

subject property building at a distance of approximately six feet from the building. An outdoor ambient air sample was collected in close proximity to the soil vapor samples in order to monitor ambient air conditions.

3.4.2 Soil Borings and Subsurface Soil Samples

Ten soil borings (SB-01, SB-03 through SB-11) were advanced on September 7 and 8, 2016 by Talon Drilling Company, via DPT drilling methods, to characterize environmental media and to screen for potential impacts. The soil borings were advanced to a maximum depth of 15 feet bgs. Bedrock was not encountered. Lithologic logging, visual and olfactory observations, and PID field screening were performed at all 10 locations. A description of the soil encountered during drilling was provided in Section 2.3. **Appendix C** presents the soil boring logs. The locations of the soil borings that were sampled are shown in Figure 3-1. Two soil samples were collected from each boring. A shallow sample was collected from 0 to 2 feet bgs in all borings, with the exception of SB-05, where a four-foot interval was used due to limited recovery during advance of the macrocore in the building. The shallow sample at SB-07 was collected from 0 to 1 foot bgs to most accurately characterize the material at the top of the former dry well, since the dry well was accessible. A second sample was collected from each boring based on RECs and field observations. PID readings across the subject property varied by location. At 7 of the 10 boring locations VOCs were detected with the PID. The intervals with PID readings ranged in depth from 1.5 to 12.5 feet bgs. The highest PID reading was recorded at 450 parts per million (ppm) at 12.5 feet bgs from SB-10 located in the southeast corner of the subject property. Subsurface soil samples were analyzed by a subcontract laboratory (RTI Laboratories). Analyses for each sample are presented in Table 3-1.

3.4.3 Existing and Temporary Monitoring Well Installation and Sampling

Temporary monitoring wells were installed via DPT drilling methods at four of the subsurface borings (SB-01/GW-01, SB-05/GW-05, SB-09/GW-09, and SB-11/GW-11). Locations were determined based on the RECs and field observations. The temporary wells were constructed of one-inch diameter polyvinyl chloride (PVC) with five feet of 0.010-inch slot screen. The total depth of the temporary wells ranged from 12.4 to 13.4 feet bgs. Each temporary well was screened across the water table. Groundwater was encountered at approximately 10 feet bgs in each well.

Groundwater samples were collected from the two existing monitoring wells (MW-1 and MW-2) and the four temporary well points. A water level from all well locations was recorded prior to sampling, ranging from 9.57 to 11.13 feet bgs. **Figure 3-1** shows the existing well locations and the temporary well point locations. The direction of groundwater flow is assumed to be toward the southwest based on the local topography, however, the lack of surveyed monitoring wells and intact casings prevented an analysis of these water levels.

Groundwater samples were collected using ¼-inch inner diameter Teflon[™]-lined polyethylene tubing and a peristaltic pump. Due to limited recovery, wells were not developed. Temporary wells GW-01, GW-05, and GW-11 had low recharge and were pumped dry even when purging at a low rate. Field personnel waited 24 hours to return to the well prior to sample collection. GW-09 was able to be purged using low-flow methodology. The groundwater sample from MW-2 was collected as a grab sample following purging the well dry, due to slow recharge. The groundwater

sample from MW-1 was collected via low-flow methodology. Prior to sample collection, water quality parameters (pH, specific conductivity, turbidity, dissolved oxygen, temperature and redox potential) were collected at five minute intervals where possible. Where recovery was poor, water quality parameters were not collected. Groundwater samples were collected once water quality parameters stabilized or when wells were able to produce sufficient volume. Groundwater sampling logs can be found in **Appendix D**.

The groundwater samples were submitted to a subcontract laboratory (RTI Laboratories). Analyses for each sample are presented in **Table 3-1**.

3.4.4 Potable Water Sampling

One sample (PW-01) was taken from the onsite potable water well. The screened depth of the well is unknown. A direct sample from the potable water well was not able to be taken. The sample was collected from the tap of a sink within the Pound Ridge Auto Body section of the subject property building. The sink was allowed to run until the water tank (inline after the potable water well) volume was replaced, prior to sample collection.

3.4.5 Investigative Derived Waste Sampling and Disposal

All soil cuttings and purge water were collected and containerized in 55-gallon drums and stored on the subject property. Seacoast Environmental Services, Inc. collected investigative derived waste (IDW) soil and groundwater samples on September 21, 2016. Following receipt of the data and waste profiling, the drums were removed for off-site disposal on November 3, 2016. Waste manifests are provided in **Appendix E**.

3.5 Deviations from the QAPP

Based on field conditions, the following changes were implemented during the investigation:

- A total of ten locations were installed; however, several of the boring locations were moved and the proposed SB-02/GW-02 location was eliminated due to the inability to access the garage for that location. Location SB-11/GW-11 was installed as the tenth location.
- The groundwater sample planned for location SB-02/GW-02 was relocated and collected at SB-05/GW-05. This allowed the groundwater sample to represent contamination downgradient of both the former drain and the abandoned UST in the garage.
- Temporary wells were allowed to sit for over 24 hours to equilibrate, but were not developed due to poor recovery.
- Groundwater quality parameters were not collected from temporary wells due to poor recovery, as well.
- As a result of limited groundwater volume in the wells, the proposed sample volume for certain temporary wells was not collected for some analyte groups. VOCs and TPH GRO were collected for GW-01, however insufficient volume was available for TPH DRO, SVOCs, PCBs, and metals. VOCs and TPH GRO was collected for GW-02, GW-10 and GW-11 however, insufficient volume was available for TPH DRO.

This page intentionally left blank.

Section 4

Summary and Evaluation of Data

This section describes the selection of evaluation criteria and summarizes the analytical results of the Phase II ESA samples. The results of this Phase II ESA will assist the Town of Pound Ridge in identifying areas and media of concern, determine if there is a need for additional delineation, and identify some appropriate options for remediation, if necessary, based on future use.

The Data Validation Reports for all data are included in Appendix F.

4.1 Selection of Evaluation Criteria

Except as noted, the data were evaluated in accordance with the site-specific QAPP, analytical results are compared to both federal and state project action limits (PALs) presented in Worksheet #15 and listed below.

Vapor Intrusion Criteria

- Office of Solid Waste and Emergency Response (OSWER) Vapor Intrusion Assessment, Vapor Intrusion Screening Level Calculator Version 3.5.1 (May 2016)
- New York State Department of Health (NYSDOH) Center for Environmental Health Bureau of Environmental Exposure Investigation (CEH BEEI) Soil Vapor Intrusion Guidance (October 2016), Air Guidelines Values (AGVs) Table 3.1

Soil Criteria

The soil evaluation criteria were revised subsequent to the finalization of the site-specific QAPP based on information provided by the Town of Pound Ridge indicating that the future use of the site is intended to be commercial use. As such the unrestricted and restricted residential soil cleanup objectives were no longer deemed appropriate. The following PALs were used for soil:

- NYSDEC Subpart 375-6: Table 375-6.8(b): Restricted Use Commercial Soil Cleanup Objectives (SCOs), supplemented with CP-51 Soil Cleanup Guidance (SCG) Table 1 (Commercial) (October 21, 2010)
- NYSDEC CP-51 SCG Table 2 (Soil Cleanup Levels for Gasoline Contaminated Soils) supplemented with CP-51 SCG Table 1 (Protection of Groundwater) (October 21, 2010)

Groundwater Criteria

- NYSDEC Part 703.5 Ambient Water Quality Standards (AWQS) for Class GA Groundwater (TOGS 1.1.1. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations)
- EPA Regional Screening Levels (RSLs) for Tap Water (November 2015)

PALs are based on federal and state groundwater guidance values (referenced as "evaluation criteria" in this report), however the federal regulations are less stringent than the remediation goals established for the subject property; therefore, groundwater analytical results are compared to NYSDEC evaluation criteria. EPA RSLs for Tap Water criteria were included for the evaluation of the PW-01-A sample collected from a tap in Pound Ridge Auto Body.

4.2 Soil Sample Results

4.2.1 Subsurface Soil Analytical Results

Table 4-1a through **Table 4-1e** present the results of the analytes detected in subsurface soil samples collected during this Phase II ESA. Section 4.6 – Evaluation of Results provides a discussion of the sample results. The soil sample exceedances are presented on **Figure 4-1**.

4.2.1.1 VOCs

No VOCs exceeded the NYSDEC Commercial Use SCOs or the CP-51 SCG values. Thirteen VOCs were detected in subsurface soil samples below the NYSDEC Commercial Use SCOs or the CP-51 SCG values.

4.2.1.2 TPH DRO and GRO

TPH DRO was detected in 19 of the 20 subsurface soil samples. The concentrations ranged from 0.48 J- milligrams per kilogram (mg/kg) (SB-11-B, 8 to 10 feet bgs) to 250 J- mg/kg (SB-07-A, 0 to 1 feet bgs). TPH GRO was detected in 4 of the 20 subsurface soil samples. The concentrations ranged from 3.7 mg/kg (SB-04-B, 9 to 11 feet bgs) to 14 J+ mg/kg (SB-07-A, 0 to 1 feet bgs). Due to the lack of state and federal guidance for TPH DRO and GRO, no exceedances were recognized.

4.2.1.3 SVOCs

No SVOCs exceeded the NYSDEC Commercial Use SCOs or the CP-51 SCG values. Twenty-three SVOCs were detected below screening criteria in subsurface soil samples at levels that did not exceed either the NYSDEC Commercial Use SCOs or the CP-51 SCG values.

4.2.1.4 PCBs

No PCBs exceeded the NYSDEC Commercial Use SCOs. One PCB (Aroclor 1260) was detected in four subsurface soil samples at levels that did not exceed NYSDEC Commercial Use SCOs.

4.2.1.5 Metals

One metal (barium) exceeded the NYSDEC Commercial Use SCOs in one subsurface soil sample, SB-07-A. The concentration of barium at SB-07-A (0 to 1 foot bgs) is 2,000 J mg/kg, which exceeds the NYSDEC Commercial Use SCO of 400 mg/kg. Nineteen metals were detected in most of the subsurface soil samples at levels that did not exceed NYSDEC Commercial Use SCOs.

4.3 Groundwater and Potable Water Sample Results

4.3.1 Existing Monitoring Well and Temporary Well Point Sample Analytical Results

Tables 4-2a through **4-2e** present the results of the analytes detected in the existing (MW-1 and MW-2) and temporary monitoring well samples (GW-01, GW-05, GW-09, and GW-11) collected

during this Phase II ESA. Section 4.6 – Evaluation of Results provides a discussion of the sample results. The exceedances for groundwater are presented on **Figure 4-1**.

4.3.1.1 VOCs

Three chlorinated benzenes were detected at concentrations that exceeded the NYSDEC AWQS in groundwater in sample (MW-1-A). VOC concentrations that exceed the AWQS in MW-1-A are listed below:

- *1,2-Dichlorobenzene* detected above the NYSDEC AWQS of 3 microgram per Liter (µg/L) in MW-1-A (3.2 µg/L)
- 1,3-Dichlorobenzene detected above the NYSDEC AWQS of 3 μg/L in MW-1-A (15 μg/L)
- *Chlorobenzene* detected above the NYSDEC AWQS of 5 μg/L in MW-1-A (79 μg/L).

Nine other VOCs were detected in groundwater samples at levels that did not exceed AWQS. No VOCs were detected in GW-09-A.

4.3.1.2 TPH

TPH DRO was detected in two locations where enough sample volume was available for analysis. The concentrations ranged from 140 J μ g/L (GW-09-A, 11.13 to 13.4 feet bgs) to 270 J μ g/L (MW-91-A (non-detect in parent sample MW-1-A at 10.6 to 20 feet bgs). TPH GRO was detected in two of the six groundwater samples. The concentrations ranged from 120 μ g/L (MW-1-A, 10.6 to 20 feet bgs) to 390 μ g/L (MW-2-A, 10.79 to 12 feet bgs). Due to lack of state and federal guidance for TPH DRO and GRO, no exceedances were recognized.

4.3.1.3 SVOCs

At MW-1, five SVOCs were detected at concentrations that exceeded the NYSDEC AWQS in the duplicate sample, MW-91-A (but not the parent sample, MW-1-A). Five SVOCs were detected in the same duplicate sample at levels that did not exceed AWQS. SVOC concentrations that exceed the AWQS of 0.002 μ g/L at MW-1 are listed below:

- 1,2-Benzphenanthracene MW-91-A (0.41 μg/L)
- Benzo(a)anthracene MW-91-A (0.28 μg/L)
- Benzo(b)fluoranthene MW-91-A (0.52 μg/L)
- Benzo(k)fluoranthene MW-91-A (0.14 μg/L)
- Indeno(1,2,3-cd)pyrene MW-91-A (0.24 μg/L)

4.3.1.4 PCBs

One PCB (Aroclor 1260) was detected at a concentration that exceeded the NYSDEC AWQS in the only sample analyzed for PCBs (MW-1-A). The concentration of Aroclor 1260 in this sample was 0.11 J μ g/L which is above the NYSDEC AWQS of 0.09 μ g/L.

4.3.1.4 Metals

Three metals were detected at concentrations that exceeded the NYSDEC AWQS in groundwater in the only groundwater sample for which metals were analyzed (MW-1-A). Ten metals were detected in the groundwater at levels that did not exceed the NYSDEC AWQS. Metal concentrations detected in MW-1 that exceed the AWQS are listed below:

- Iron MW-1-A (2,200 J μg/L), above NYSDEC AWQS of 300 μg/L.
- Manganese MW-1-A (440 μg/L), above NYSDEC AWQS of 300 μg/L.
- Sodium MW-1-A (120,000 μg/L), above NYSDEC AWQS of 20,000 μg/L.

4.3.2 Potable Water Sample Analytical Results

Tables 4-3a through **4-3c** present the results of the analytes detected in the potable water sample (PW-01). Section 4.6 – Evaluation of Results provides a discussion of the sample results. The potable water sample exceedances are presented on **Figure 4-1**.

4.3.2.1 VOCs

Two VOCs (methyl acetate and toluene) were detected in the potable water sample (PW-01-A) at levels that did not exceed NYSDEC AWQS or the EPA RSLs.

4.3.2.2 SVOCs

No SVOCs were detected in the potable water sample.

4.3.2.3 Metals

Sodium exceeded the NYSDEC AWQS (but not the EPA RSL) in the potable water sample. Antimony exceeded the EPA RSL for Tap Water (but not the NYSDEC AWQS) in the potable water sample. Fourteen metals were detected at levels that did not exceed the NYSDEC AWQS or the EPA RSLs in the potable water sample. Metal concentrations that exceed the AWQS or EPA RSLs are listed below for the potable water sample.

- Antimony PW-01-A (2.4 J μg/L), detected above the EPA RSLs for Tap Water of 0.78 μg/L.
- Sodium PW-01-A (67,000 μg/L), detected above the NYSDEC AWQS of 20,000 μg/L.

4.4 Soil Vapor and Ambient Air Sample Results

4.4.1 Soil Vapor Analytical Results

Table 4-4 presents the results of the analytes detected in soil vapor and ambient air samples collected during this Phase II ESA. Section 4.6 – Evaluation of Results provides a discussion of the sample results. The soil vapor exceedances are presented on **Figure 4-2**.

4.4.1.1 VOCs

There are no NYSDOH criteria for soil vapor; however results can be compared to AGV for indoor air as a means of evaluating the potential for vapor intrusion. Tetrachloroethene (PCE) concentrations exceeded the NYSDOH AGV at both soil vapor locations. Six VOCs (2-butanone, acetone, carbon disulfide, chloroform, m,p-xylene, and toluene) were also detected in soil vapor

samples. There are no NYSDOH AGVs for these compounds. **Table 4-4** presents detections and exceedances. VOC concentrations that exceed the NYSDOH AGVs are listed below for all soil vapor locations.

PCE – Concentrations above the NYSDOH AGV of 30 micrograms per cubic meter (μg/m³) were detected in SV-01-A at eight feet bgs (64 J μg/m³) and SV-02-A at eight feet bgs (67 J μg/m³).

4.4.2 Outdoor Air Analytical Results

Table 4-4 presents the results of the analytes detected in the outdoor air sample collected during this Phase II ESA.

4.4.2.1 VOCs

No VOCs exceeded the NYSDOH AGVs. One VOC, acetone was detected at a level that did not exceed NYSDOH AGVs.

4.5 Quality Assurance/Quality Control

Two field rinsate blanks were collected, one by pouring deionized water over dedicated soil sampling equipment, and the other by pouring deionized water over dedicated groundwater sampling equipment and into sample bottles. Field rinsate blanks were submitted with the environmental samples and analyzed for the same parameters. The field rinsate blank associated with soil and groundwater collection has detections of VOCs (acetone, 2-butanone and methylene chloride), SVOC (naphthalene), and metals below the contract reporting quantitation limit (CRQL), and metals, GRO and DRO above the CRQL. Two trip blanks were collected, shipped with the aqueous field samples and analyzed for VOCs. Acetone, 2-butanone, chloromethane and methylene chloride was detected in the trip blank.

All data were validated by CDM Smith and have been reviewed to assess whether data quality is sufficient to support the project objectives. All laboratory analyses were method compliant. Some quality control (QC) parameters were outside criteria; associated sample results were qualified accordingly. Data qualified as estimated J, J+, J-, U, or UJ are usable for project decisions; rejected data (R) are not considered usable for project purposes. Data validation reports are included in **Appendix F**. QC outliers noted within the EPA validation reports are described below.

- *Analytical Blanks* Laboratory method blanks that had detections include VOCs and TPH. Associated sample results were appropriately qualified as estimated non-detect U.
- *Field Rinsate Blanks* Field rinsate blanks that had detections include VOCs and metals. Associated sample results were appropriately qualified as estimated non-detect (U).
- *Trip Blanks* Trip blanks had detections for VOCs. Associated sample results were appropriately qualified as estimated non-detect (U).
- Surrogate Recoveries Several surrogates exceeded QC criteria. This affected sample results for VOCs, SVOCs and TPHs which were estimated (J/J+/J-/UJ) by the data validator.

- Matrix Spike/Matrix Spike Duplicate (MS/MSD) These QC data were generated to determine the long-term precision and accuracy of the analytical method in various matrices. Several MS/MSDs did not meet QC criteria. The MS/MSD results affected VOC, SVOC, TPH and metal sample results, which were qualified as estimated (J/J-/UJ) by the data validator. In addition, seven SVOC compounds in sample SB-01-A and three SVOC compounds in sample MW-1-A were qualified as rejected by the validator.
- Initial Calibration The initial calibration for air VOCs exceeded QC criteria. The affected sample results were estimated (J) by the data validator.
- *Continuing Calibration Verification (CCV)* Several CCVs exceeded QC criteria. This affected sample results for VOCs, SVOCs and PCB which were estimated (J/UJ) by the data validator.
- *Field Duplicate* One analyte had a relative percent difference above the validation criteria in the field duplicate sample pairs. This metal result was qualified estimated (J) by the data validator for the parent sample and field duplicate sample.
- *Canister Pressure Criteria* Several canister pressures exceeded QC criteria. This affected sample results for air VOCs which were estimated (J/UJ) by the data validator.
- *Target Compound Identification* One target compound identification percent difference exceeded QC criteria. This affected one PCB sample result which was estimated (U) by the data validator.
- Laboratory Control Sample Several laboratory control samples exceeded criteria and were qualified as estimated (J/UJ) for VOC and SVOC. In addition, one SVOC compound in two samples (MW-1-A and MW-91-A) was rejected by the validator.
- Internal Standards Internal standards performance criteria ensure that gas chromatography (GC)/ mass spectrometry (MS) sensitivity and response are stable during every analytical run. Some SVOCs internal standards results were outside criteria. Associated sample results were estimated (J/J+/UJ).

The final percentages of valid data are 99.26 percent (%) for groundwater, 99.72% for soil and 100% for air. The rejected data should not be used for project decisions. The ninety percent completeness goal for usable data has been met.

Data failing QC criteria were appropriately qualified as estimated, non-detect or rejected during data validation. All data reported herein are usable with the data validation qualifiers added except for rejected data.

4.6 Evaluation of Recognized Environmental Conditions 4.6.1 Evaluation of Historic Spills (REC-1 – Spill #9412600/9507568, HREC – Spill #020451)

Four subsurface soil borings (SB-01, -08, -09, and -10), three temporary wells (GW-01, GW-05, and GW-09), one permanent monitoring well (MW-2), one potable water well (PW-01), two soil vapor samples (SV-01 and SV-02) and one outdoor air sample (OA-01) were used to evaluate

potential impacts associated with the historical offsite spill. Analytical exceedances are presented on **Figure 4-1**. There were no exceedances of Commercial Use or CP-51 SCOs in subsurface soil, including petroleum related compounds toluene, ethylbenzene, xylene, and MTBE. BTEX constituents toluene, ethylbenzene, and xylenes were detected in SB-08-A, although at low concentrations. TPH GRO was not detected and the highest TPH DRO concentration was identified at the upgradient background location (9.6 J- mg/kg in SB-01-A). Therefore, it is likely that minimal residual petroleum in soil is present on the subject property, related to these spills.

There were also no exceedances in groundwater and no detections specifically of petroleumrelated compounds (including BTEX, MTBE, and TPH GRO), and only one detection of TPH DRO (140 J μ g/L at GW-09-A). Therefore, it is likely that minimal residual petroleum in groundwater is present on the subject property, related to these spills.

One temporary well (GW-05) and one existing monitoring well (MW-2) were used to evaluate the spill associated with the historic UST removal. Monitoring well MW-2 was sampled to characterize groundwater contamination associated with this spill, downgradient of the former gasoline and diesel USTs. Due to a limited groundwater recharge, there was only enough sample volume for VOC and TPH GRO analysis. There were no exceedances of VOCs, and only a few detections. TPH GRO was detected at 390 μ g/L, which is a low concentration, but the highest detected during this investigation. Therefore, there is still a small impact to groundwater from the former USTs.

Temporary well GW-05 was used to characterize the abandoned fuel oil UST in the garage on the north side of the building. VOCs and TPH GRO were the only analyses collected from this sample due to poor recovery. TPH GRO was not detected and no VOCs were detected with the exception of trace levels of methyl acetate. Therefore, there is no evidence of impacts to groundwater from the abandonment of this UST based on the samples collected from this area. Since data was not collected for TPH DRO, it is uncertain whether diesel impacted media within this REC.

4.6.2 On-Site Dry Wells (REC-2)

Data from six soil borings (SB-03, -04, -05, -06, -07, -11), two temporary wells (GW-05 and GW-11), and one existing monitoring well (MW-1) are being used to evaluate the onsite dry wells. Analytical exceedances are presented on **Figure 4-1**.

4.6.2.1 Eastern Dry Well

The soil samples associated with the eastern dry well contained no exceedances above Commercial Use or CP-51 SCOs. Low concentrations of TPH DRO and TPH GRO, toluene, ethylbenzene, and chlorinated benzene compounds were detected in SB-03-B (5 to 7 feet bgs), just north of the dry well. Low concentrations of numerous SVOCs and polyaromatic hydrocarbons (PAHs) were also identified in soil. One PCB, Aroclor 1260 was detected with a low concentration at SB-03-A (0 to 2 feet bgs). Numerous metals were detected in all soil samples but all below Commercial Use SCOs.

GW-05, located downgradient of the former floor drain was only analyzed for VOCs and TPH GRO due to sample volume limitations and contained only trace levels of VOCs. Due to the lack in sample recovery at the subject property, SVOCs, PCBs, TPH DRO, and metals were not collected at all proposed locations. Therefore, the characterization of groundwater contamination at the

eastern dry well is primarily based on existing monitoring well MW-1. The well is located downgradient from the former dry well and had exceedances above NYSDEC AWQS for VOCs, SVOCs, PCBs, and metals. The only VOC exceedances in MW-1 are chlorinated benzene compounds, commonly found in solvents. The Phase I ESA reports that degreasers were historically used in the sink that lead to the dry well, which could account for these detections. TPH DRO and TPH GRO were detected in low concentrations in this well as well. PAHs associated with petroleum, including benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd) pyrene exceeded NYSDEC AWQS. Aroclor 1260 was detected in this well and exceeded the NYSDEC AWQS. Iron, manganese, and sodium were detected above the NYSDEC AWQS, however these are likely naturally occurring metals.

4.6.2.2 Western Dry Well

The soil samples associated with the western dry well contained no exceedances above Commercial Use or CP-51 SCOs exception for barium at SB-07-A (0 to 1 foot bgs); its concentration was 2,000 J mg/kg. This soil boring was installed from the surface soil within the former dry well. The subject property owner stated that the laundry facilities within the building drained to this dry well. Barium compounds are known to be used in laundry detergents and soaps. Barium is also naturally occurring in both soil and water. A barium concentration of 48 J mg/kg was detected in the second subsurface soil sample, SB-07 (9 to 11 feet bgs), similar to the other subsurface soil samples. It is likely that the barium exceedance seen in SB-07 from 0 to 1 feet bgs is not associated with background levels and was a result of materials drained to that dry well. Soil samples related to the western dry well contained trace levels of VOCs and TPH, consistent with the rest of the site, although the highest TPH DRO concentration was found in SB-07-A (0 to 1 foot bgs), which was 250 J- mg/kg. This indicates that diesel fuel or wastewater containing diesel fuel may have been disposed in this location in the past. Low concentrations of PCB Aroclor 1260 were found in the shallow soil samples in this area. Numerous SVOCs and PAHs were detected in this area, with highest concentrations in shallow samples. These compounds are likely related to the current operations of the auto repair and auto body shops, since the concentrations are significantly lower in the dry well (SB-07) than in the location downgradient (SB-11) and lower still in the deeper samples.

Due to limited groundwater recharge observed in the temporary wells during the investigation, SVOCs, PCBs, TPH DRO, and metals were not analyzed in the sample collected at GW-11. Therefore, the only characterization of groundwater downgradient of the western dry well is that TPH GRO was not detected and no VOCs were detected with the exception of trace levels of carbon tetrachloride.

4.6.3 Potable Water Well Evaluation

Historically, potable water wells in the area have contained BTEX and MTBE. The potable well on the subject property contained 7.9 μ g/L of MTBE and no BTEX in 1995. The potable water well sample collected from the tap within the subject property building contained 0.98 J μ g/L of toluene and no MTBE. This detection of toluene is below both the EPA RSL and NYSDEC AWQS. Based on these results, the potable water well is minimally impacted by the spills associated with this REC. Furthermore, the Town of Pound Ridge Supervisor stated that adjacent properties' potable water wells had recently been sampled with no detections of VOCs, as a part of routine Westchester County Department of Health(WCDOH)-mandated testing. While unsubstantiated,

this information suggests contamination associated with the RECs at the subject property is not impacting the bedrock aquifer. The potable well sample did have an exceedance of the AWQS for sodium. No EPA RSL for tap water exists for sodium. The owner of the subject property confirmed with the field team that the potable water onsite was not used for drinking. If the tap water is used as a future drinking source, a level of sodium greater than 20 milligrams per liter (mg/L) (the NYSDEC AWQS for sodium) is not recommended by NYSDOH for those on a sodium restricted diet or those with high blood pressure. However, the concentration in the potable water well (67 mg/L) is well within the range of someone on a moderately restricted sodium diet (maximum of 270 mg/L).

The potable water sample also had an exceedance of the EPA RSL for antimony, the result value did not exceed the NYSDEC AWQS. Antimony can be leached from fixtures and plumbing. Although skin contact with antimony in solution is safe, the ingestion of antimony at this concentration can pose a concern. There was one detection of toluene below both the EPA RSL and NYSDEC AWQS. Analytical exceedances are presented on **Figure 4-1**.

4.6.4 Evaluation of Soil Vapor Intrusion Potential

Soil vapor was investigated due to the potential for petroleum-related compounds or PCE to impact air quality at the subject property building. Analytical exceedances are presented on **Figure 4-2**. PCE was detected at low concentrations historically in tap water at a dry cleaner at 72 Westchester Avenue. There were detections for seven VOCs within soil vapor samples collected from 8 feet bgs outside the subject property building. These VOCs include both BTEX compounds and PCE. New York State does not have any standards, criteria or guidance values for concentrations of compounds in soil vapor. There are also no available background levels for soil vapor but soil vapor results can be compared to background outdoor air levels or the NYSDOH AGVs. The outdoor air sample (AO-01) collected for reference did not have any detections except for acetone. All VOC detections were observed to be below EPA criteria, however PCE was detected above the NYSDOH AGV of 30 μ g/m³ in both soil vapor samples. This lends to the possibility of soil vapor intrusion into the subject property building.

This page intentionally left blank.

Section 5

Conclusions and Recommendations

5.1 Conclusions

CDM Smith's conclusions are based on analytical results, historic information, and visual observations summarized below.

- There is no significant evidence of impacts from the former USTs or other petroleum related sources at the site (REC-1 and HREC). There are low concentrations of TPH GRO and DRO across the subject property in soil and on the southwestern half of the site in groundwater. There are no exceedances of VOCs above 6 NYCRR Part 375-6(b) Restricted Use Commercial, NYSDEC CP-51 supplemental soil cleanup objectives (SCOs) or soil cleanup levels for gasoline or fuel oil contaminated soils.
- The subject property potable water well had exceedances of the NYSDEC ambient water quality standards (AWQS) and EPA RSLs for sodium and antimony, respectively. The potable water well is not currently used for drinking water. Therefore, the exceedances do not present concern.
- Soil and groundwater associated with the eastern former dry well contain TPH DRO and GRO, BTEX (benzene, toluene, ethylbenzene, xylenes), chlorinated benzene compounds, PAHs, PCBs, and metals. These compounds are consistent with the former use of the dry well as the discharge for the rinse sink in the automotive garage. There are no exceedances in soil, but compounds from all analyte groups exceed NYSDEC AWQS in groundwater.
- Soil associated with the western dry well contains TPH DRO and GRO, toluene, PAHs, PCBs, and metals, although the only exceedance of NYSDEC Commercial Use SCOs was barium in one sample, which may be related to the laundry wastewater that discharged into the dry well. There were no exceedances in groundwater associated with this dry well.
- The limitation of groundwater recovery in the temporary wells and MW-2 prevented the characterization of DRO, SVOCs, PCBs, and metals across the site.
- Groundwater samples collected downgradient of former USTs (HREC) indicate that petroleum contamination is still present in low concentrations, however no BTEX or methyl tert-butyl ether (MTBE) was detected in these samples.
- Detections of PCE at concentrations in soil vapor above New York State Department of Health Air Guidance Values (NYSDOH AGVs) suggests there is a potential for soil vapor intrusion of PCE into the building located at 77 Westchester Avenue. Soil and groundwater samples collected throughout the subject property did not yield any detections for PCE. Therefore, PCE impacted soil vapor on the subject property is likely a result of off-site activities.

5.2 Recommendations

Based on the results of the Phase II ESA activities and an evaluation of subject property information based on previous environmental investigations, the following recommendations are made:

- The exceedances in MW-1 indicate an impact to groundwater associated with the eastern dry well. It is recommended that this groundwater contamination be further characterized to better understand the risks associated with the contamination. CDM Smith recommends groundwater samples be collected on all sides of the dry well and a soil sample be collected through the bottom of the dry well. Insufficient sample volume from MW-2 and temporary wells were a result of poor groundwater volume recovery. Larger diameter permanent monitoring wells should be installed on the subject property to allow for greater recovery volume and therefore sufficient volume for a full suite of analyses (VOCs, SVOCs, PCBs, Metals, TPH DRO and GRO). This is necessary for a more comprehensive characterization of groundwater impacts associated with the dry wells and the fuel oil UST.
- Should the potable water well on the subject property be used for drinking water in the future, sampling and treatment would be required to ensure water quality meets EPA RSLs and NYSDEC AWQS. Presently a deed restriction should be employed limiting the use of the well to non-potable.
- Shallow soil in the area of the dry well northwest of the building did exhibit barium contamination at levels exceeding Commercial Use SCOs. It is recommended that this covered dry well be excavated or formally abandoned.
- NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH 2006) does not warrant further vapor intrusion investigation. However, if the current use of the building remains and no means of vapor mitigation is employed, the indoor air quality could be confirmed via an indoor air/sub-slab vapor sampling investigation. In the event that the results of such an investigation warrant mitigation, potential exposure could likely be mitigated via installation of a sub-slab depressurization system or retrofitted vapor barrier.

When undertaking subject property development, it is recommended that the developer enlist a professional engineer or scientist to prepare a health and safety plan, construction contingency plans, and a soils management plan, in order to safely and appropriately remove (and control) impacted materials. It is recommended that any work performed at the subject property be performed by an environmental professional (or if necessary a professional engineer) following approved plans and a site-specific health safety plan approved by a certified industrial hygienist (CIH).

In the absence of the limited remediation suggested above, engineering controls should be implemented, requiring that any construction involving the disturbance of soils within the subject property (including non-emergency excavation, which may be part of utility repair or maintenance, or construction) be performed with the involvement of a professional engineer, and be conducted in accordance with local state and federal rules and regulations, providing

adequate engineering controls and worker protection. In the absence of remediation, the values of adjacent and surrounding properties may be (and currently be) negatively impacted. The loss of property value may represent some risk to public welfare, yet this risk may not be considered significant risk.

This page intentionally left blank.

Section 6

References

ASTM International. 2002. E 1903-97 Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process.

CDM Smith. 2016. Final Site-Specific Quality Assurance Project Plan, Former Duofold Corporation, Targeted Brownfields Assessment, Ilion, New York. October.

_____. 2016. Site-Specific Health and Safety Plan, Former Duofold Corporation, Targeted Brownfields Assessment, Ilion, New York. July.

United States Environmental Protection Agency (EPA). 2014. Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. May.

_____. 2010. Final Work Plan, Targeted Brownfields Assessments for Selected Region 2 Brownfields Initiative Sites. December.

_____. 2009. United States Environmental Protection Agency (EPA) National Primary Drinking Water Standards, EPA 816-F-09-0004. May.

_____. 2008. Final Generic Quality Assurance Project Plan Target Brownfields Assessments. May.

_____. 2000. Region 2 Brownfields Project Planning Guidance. May.

_____. 1998. Quality Assurance Guidance for Conducting Brownfields Site Assessments. September.

New York State Department of Environmental Conservation (NYSDEC). 2010. CP-51/Soil Cleanup Guidance. October.

_____. 2010. DER-10 Technical Guidance for Site Investigations and Remediation. May.

_____. 2008. 6 NYCRR Part 703 – Water Quality Standards Subparts 703.5. January.

_____. 2006. 6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1 to 375-4 & 375-6. December.

_____. 2004. Technical & Operational Guidance Series (TOGS), Section 1.1.1 Ambient Water Quality Standards & Guidance Values and Groundwater Effluent. June.

This page left intentionally blank

Tables

Table 3-1 Sample Summary 77 Westchester Avenue, Pound Ridge/Scotts Corners Site

									Analyses		
REC	Location	Sample ID	Collection Date- Time	Depth Interval (feet)	PID Response (ppm)	QA/QC	VOCs	SVOCs	ТРН	PCBs	Metals
				Soil Samples							
	SB-01	SB-01-A	9/7/2016 9:20	0 - 2	0.0	MS/MSD	x	x	x	x	x
	SB-01	SB-01-B	9/7/2016 10:00	6 - 8	0.0		x	x	x	x	x
	SB-08	SB-08-A	9/7/2016 15:30	0 - 2	5.3		x		x		
1 - Investigation relating to offsite spill and product	SB-08	SB-08-B	9/7/2016 15:40	5 - 7	0.0		x		x		
observed at MW-3	SB-09	SB-09-A	9/7/2016 14:20	0 - 2	0.0		x		x		
	SB-09	SB-09-B	9/7/2016 14:40	8 - 10	0.0		x		x		
	SB-10	SB-10-A	9/7/2016 16:30	0 - 2	0.0		x		x		
	SB-10	SB-10-B	9/7/2016 16:45	8 - 10	0.0		х		x		
	SB-03	SB-03-A	9/7/2016 10:40	0 - 2	0.0		x	x	x	x	x
	SB-03	SB-03-B	9/7/2016 12:35	5 - 7	62.0		x	x	x	x	x
	SB-04	SB-04-A	9/7/2016 12:55	0 - 2	0.0		x	x	x	x	x
	SB-04	SB-04-B	9/7/2016 13:40	9 - 11	0.0		x	x	x	x	x
	SB-05	SB-05-A	9/8/2016 9:55	0 - 4	0.0		x	x	x	x	x
2 - Investigation of onsite	SB-05	SB-05-B	9/8/2016 10:30	5.5 - 9.5	0.0		x	x	x	x	x
dry wells and magnetic anomaly	SB-06	SB-06-A	9/8/2016 8:25	0 - 2	0.0		x	x	x	x	x
	SB-06	SB-06-B	9/8/2016 9:00	7 - 9	0.2		x	x	x	x	x
	SB-06	SB-906-B	9/8/2016 9:00	7 - 9	0.2	Field Duplicate	x	x	x	x	x
	SB-07	SB-07-A	9/8/2016 11:20	0 - 1	0.1		x	x	x	x	x
	SB-07	SB-07-B	9/8/2016 11:55	9 - 11	0.3		x	x	x	x	x
	SB-11	SB-11-A	9/8/2016 12:30	0 - 2	0.3		x	x	x	x	x
	SB-11	SB-11-B	9/8/2016 12:45	8 - 10	0.0		x	x	x	x	x

Table 3-1 Sample Summary 77 Westchester Avenue, Pound Ridge/Scotts Corners Site

									Analyses	í	
REC	Location	Sample ID	Collection Date- Time	Depth Interval (feet)	PID Response (ppm)	QA/QC	VOCs	SVOCs	ТРН	PCBs	Metals
				Aqueous Sample	es						
1 Investigation relation to	GW-01	GW-01-A	9/9/2016 14:00	8 - 13	NS		x		x*		
offsite spill and product observed at MW-3	GW-09	GW-09-A	9/12/2016 11:00	11.13 - 12.3	NS		x		x		
	PW-01	PW-01-A	9/12/2016 12:15	N/A	NS		x	x			x
	MW-1	MW-1-A	9/9/2016 11:45	10.6 - 20	NS	MS/MSD	x	x	x	x	x
2 - Investigation of onsite dry wells and magnetic anomaly	MW-1	MW-91-A	9/9/2016 11:45	10.6 - 20	NS	Field Duplicate	x	x	x	x	x
anomary	GW-11	GW-11-A	9/12/2016 10:00	10.5 - 12.6	NS		x				
2/HREC	GW-05	GW-05-A	9/9/2016 14:30	11 - 12.3	NS		x				
2/HREC	GW-05	GW-05-B	9/12/2016 11:30	11 - 12.3	NS		x		x*		
HREC - Investigation relating to historical UST removal	MW-2	MW-2-A	9/12/2016 12:35	10.79-12	NS		x		x*		
				Air Samples							
	SV-01	SV-01-A	9/12/2016 15:57	8	NS		x				
1 - Investigation relating to	SV-02	SV-02-A	9/12/2016 16:07	8	NS		x				
observed at MW-3	SV-02	SV-902-A	9/12/2016 16:07	8	NS	Field Duplicate	x				
	AO-01	AO-01-A	9/12/2016 16:04	N/A	NS	Outdoor Ambient	x				

Acronyms

ID - identification

QA/QC - quality assurance/quality control

MS/MSD - matrix spike/matrix spike duplicate

- N/A not applicable
- NS not sampled
- ppm parts per million
- VOCs volatile organic compounds

SVOCs - semi-volatile organic compounds

PCBs - polychlorinated biphenyls

PID - photoionization detector

REC - recognized environmental condition

TPH - total petroluem hydrocarbons

HREC - historical recognized environmental condition

* - gasoline-range organics only

I					65.64.5	60.00 A		65 64 A	60.04.0	65 65 A			60.06 D	
			Sample	ID SB-01-A	SB-01-B	SB-03-A	28-03-B	SB-04-A	SB-04-B	SB-05-A	SB-05-B	SB-06-A	SB-06-B	SB-906-B
			Location	ID SB-01	SB-01	SB-03	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-06	SB-06
			Sample Da	te 9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016
			Sample Ty	e N	N	N	N	N	N	N	N	N	N	FD
			Parent Sample Co	le										SB-06-B
	1		Depth (feet b	s) 0-2	6-8	0-2	5-7	0-2	9-11	0-4	5.5-9.5	0-2	7-9	7-9
		NYSDEC												
		Commercial Use	NYSDEC CP-51 Soil											
CAS No.	Chemical	SCOs	Cleanup Guidance Un	t Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result C	ر Result Q
71-55-6	1,1,1-TRICHLOROETHANE	500000	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NL	600 μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETH	NL	6000 μg/k	g 0.89 UJ	0.8 UJ	0.87 UJ	0.84 UJ	1.1 UJ	0.8 UJ	0.89 U	0.94 U	1 UJ	0.92 L	J 0.94 UJ
79-00-5	1,1,2-TRICHLOROETHANE	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
75-34-3	1,1-DICHLOROETHANE	240000	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
75-35-4	1,1-DICHLOROETHENE	500000	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
87-61-6	1,2,3-TRICHLOROBENZENE	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
120-82-1	1,2,4-TRICHLOROBENZENE	NL	3400 μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	NL	NL μg/k	g 4.5 U	4 U	4.3 U	4.2 U	5.4 U	4 U	4.5 U	4.7 U	5 U	4.6 L	4.7 U
106-93-4	1,2-DIBROMOETHANE	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
95-50-1	1,2-DICHLOROBENZENE	500000	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.98 J+	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
107-06-2	1,2-DICHLOROETHANE	30000	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
78-87-5	1,2-DICHLOROPROPANE	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
541-73-1	1,3-DICHLOROBENZENE	280000	NL μg/k	g 0.89 U	0.8 U	0.87 U	59 J+	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
106-46-7	1,4-DICHLOROBENZENE	130000	NL μg/k	g 0.89 U	0.8 U	0.87 U	120 J+	1.1 U	0.58 J	0.89 U	0.94 U	1 U	0.92 L	0.94 U
78-93-3	2-BUTANONE (MEK)	500000	300 μg/k	g 6.6 J	16 U	17 U	21	22 U	16 U	18 U	19 U	20 U	18 L	i 19 U
591-78-6	2-HEXANONE	NL	NL μg/k	g 4.5 U	4 U	4.3 U	4.2 U	5.4 U	4 U	4.5 U	4.7 U	5 U	4.6 L	4.7 U
108-10-1	4-METHYL-2-PENTANONE (MIBK)	NL	1000 μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
67-64-1	ACETONE	500000	NL μg/k	g 83 J	26 J	62 J	89 J	53 J	5 J	8.9 U.	J 1.8 J	60 J	61 J	49 J
71-43-2	BENZENE	44000	60 μg/k	g 0.54 U	0.48 U	0.52 U	0.5 U	0.65 U	0.48 U	0.53 U	0.56 U	0.6 U	0.55 L	0.56 U
74-97-5	BROMOCHLOROMETHANE	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
75-27-4	BROMODICHLOROMETHANE	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
75-25-2	BROMOFORM	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
74-83-9	BROMOMETHANE	NL	NL μg/k	g 8.9 U	8 U	8.7 U	8.4 U	11 U	8 U	8.9 U	9.4 U	10 U	9.2 L	9.4 U
75-15-0	CARBON DISULFIDE	NL	2700 μg/k	g 0.89 U	0.58 J	0.87 U	18	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
56-23-5	CARBON TETRACHLORIDE	22000	NL µg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
108-90-7	CHLOROBENZENE	500000	NL μg/k	g 0.89 U	0.8 U	0.87 U	41 J+	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	0.94 U
75-00-3	CHLOROETHANE	NL	1900 µg/k	g 1.8 U	1.6 U	1.7 U	1.7 U	2.2 U	1.6 U	1.8 U	1.9 U	2 U	1.8 L	J 1.9 U
67-66-3	CHLOROFORM	350000	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	J 0.94 U
74-87-3	CHLOROMETHANE	NL	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	J 0.94 U
156-59-2	CIS-1,2-DICHLOROETHENE	500000	NL μg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	J 0.94 U
10061-01-5	CIS-1,3-DICHLOROPROPENE	NL	NL µg/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	J 0.94 U
110-82-7	CYCLOHEXANE	NL	NL ug/k	g 1.8 U	1.6 U	1.7 U	1.7 U	2.2 U	1.6 U	1.8 U	1.9 U	2 U	1.8 L	J 1.9 U
124-48-1	DIBROMOCHLOROMETHANE	NL	NL ug/k	g 0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	10	0.92 L	J 0.94 U
75-71-8	DICHLORODIFLUOROMETHANE	NL	NL ug/k	g 0.89 UI	0.8 UI	0.87 UI	0.84 UI	1.1 UI	0.8 UI	0.89 U	0.94 U	1 UI	0.92 1	JJ 0.94 UI
100-41-4	ETHYLBENZENE	390000	1000 ug/k	g 0.89 U	0.8 U	0.87 U	4.3	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 L	J 0.94 U
98-82-8	ISOPROPYLBENZENE	NL	2300 ug/k	g 0.89 U	0.8 U	0.87 U	11.1+	1.1 U	0.8 U	0.89 U	0.94 U	10	0.92 L	0.94 U
L	_ · · · · · · · · · · · · · · · · · · ·		P6/ N	0.00	0.00	0.07	== 3 :	1.10	0.0 0	0.00	0.0	- 0	0.0 - 0	0.0 . 0

		Sdl	npie iD	SB-01-A	SB-01-B	SB-03-A	SB-03-B	SB-04-A	SB-04-B	SB-05-A	SB-05-B	SB-06-A	SB-06-B	SB-906-B						
		Loca	tion ID	SB-01	SB-01	SB-03	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-06	SB-06						
		Samp	le Date	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016						
		Samp	le Type	Ν	N	N	N	N	Ν	Ν	Ν	N	N	FD						
		Parent Sampl	e Code											SB-06-B						
		Depth (fe	et bgs)	0-2	6-8	0-2	5-7	0-2	9-11	0-4	5.5-9.5	0-2	7-9	7-9						
	NYSDEC																			
	Commercial Use	NYSDEC CP-51 Soil																		
Chemical	SCOs	Cleanup Guidance	Unit	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q						
P-XYLENE	500000	260	µg/kg	1.8 U	1.6 U	1.7 U	6.4 J+	2.2 U	1.6 U	1.8 U	1.9 U	2 U	1.8 U	1.9 U						
THYL ACETATE	NL	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
THYL TERT-BUTYL ETHER	500000	930	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
THYLCYLOHEXANE	NL	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
THYLENE CHLORIDE	500000	NL	µg/kg	4.5 U	4 U	4.3 U	4.2 U	5.4 U	4 U	4.5 U	4.7 U	5 U	4.9 J	4.8 J						
YLENE	500000	260	µg/kg	0.89 U	0.8 U	0.87 U	1.7 J+	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
/RENE	NL	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
FRACHLOROETHENE	150000	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
LUENE	500000	700	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
ANS-1,2-DICHLOROETHENE	500000	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
ANS-1,3-DICHLOROPROPENE	NL	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
CHLOROETHENE	200000	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
CHLOROFLUOROMETHANE	NL	NL	µg/kg	0.89 U	0.8 U	0.87 U	0.84 U	1.1 U	0.8 U	0.89 U	0.94 U	1 U	0.92 U	0.94 U						
IYL CHLORIDE	13000	NL	µg/kg	0.72 U	0.64 U	0.69 U	0.67 U	0.86 U	0.64 U	0.71 U	0.75 U	0.8 U	0.74 U	0.75 U						
	Chemical XYLENE HYL ACETATE HYL TERT-BUTYL ETHER HYLCYLOHEXANE HYLENE CHLORIDE LENE ENE ACHLOROETHENE JENE IS-1,2-DICHLOROETHENE IS-1,3-DICHLOROPROPENE HLOROETHENE HLOROFLUOROMETHANE L CHLORIDE	NYSDEC Commercial UseChemicalSCOsXYLENE500000HYL ACETATENLHYL TERT-BUTYL ETHER500000HYLCYLOHEXANENLHYLENE CHLORIDE500000ENENLACHLOROETHENE150000JENE500000VS-1,2-DICHLOROETHENES00000HLOROETHENENLHLOROETHENENLHLOROFLUOROMETHANENLL CHLORIDE13000	Samp Samp Parent Sampl Depth (fe Commercial Use Chemical SCOs Cleanup Guidance XYLENE 500000 260 1YL ACETATE NL NL 1YL TERT-BUTYL ETHER 500000 930 1YLCYLOHEXANE NL NL 1YLCYLOHEXANE NL NL 1YLENE CHLORIDE 500000 NL LENE 500000 260 ENE NL NL ACHLOROETHENE 150000 NL JENE 500000 260 ENE NL NL ACHLOROETHENE 150000 NL JENE 500000 700 NL JENE 500000 NL JENE 500000 NL	Sample Date Sample Type Parent Sample Code Depth (feet bgs) NYSDEC CP-51 Soil Chemical SCOs Cleanup Guidance Unit XYLENE 500000 260 µg/kg HYL ACETATE NL NL µg/kg HYL TERT-BUTYL ETHER 500000 930 µg/kg HYLCYLOHEXANE NL NL µg/kg HYLCYLOHEXANE NL NL µg/kg LENE 500000 NL µg/kg ENE NL NL µg/kg ENE NL NL µg/kg S500000 NL µg/kg ENE NL NL µg/kg S500000 NL µg/kg ENE S00000 NL µg/kg S51,2-DICHLOROETHENE 500000 NL µg/kg HLOROETHENE NL NL µg/kg HLOROETHENE NL NL µg/kg	Sample Date 9/7/2016 Sample Type N Parent Sample Code Depth (feet bgs) Depth (feet bgs) 0-2 NYSDEC NYSDEC Commercial Use NYSDEC CP-51 Soil Chemical SCOs Cleanup Guidance Unit Result Q YLENE 500000 260 µg/kg 0.89 U YL ACETATE NL NL µg/kg 0.89 U YL TERT-BUTYL ETHER 500000 930 µg/kg 0.89 U HYL TERT-BUTYL ETHER 500000 NL µg/kg 0.89 U HYLCYLOHEXANE NL NL NL µg/kg 0.89 U HYLENE CHLORIDE 500000 NL µg/kg 0.89 U ACHLOROETHENE NL NL µg/kg 0.89 U ACHLOROETHENE 500000 NL µg/kg 0.89 U JENE NL NL µg/kg 0.89 U	Sample Date 9/7/2016 9/7/2016 Sample Date 9/7/2016 9/7/2016 Sample Type N N Parent Sample Code Depth (feet bgs) 0-2 6-8 Chemical SCOs Cleanup Guidance Unit Result Q Result Q YLENE 500000 260 µg/kg 0.89 U 0.8 U YL ACETATE NL NL µg/kg 0.89 U 0.8 U YL TERT-BUTYL ETHER 500000 930 µg/kg 0.89 U 0.8 U YL TERT-BUTYL ETHER 500000 NL µg/kg 0.89 U 0.8 U YLENE 500000 NL µg/kg 0.89 U 0.8 U YL TERT-BUTYL ETHER NL NL µg/kg 0.89 U 0.8 U YLENE NL NL µg/kg 0.89 U 0.8 U 0.8 U 0.8U	Sample Date 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 N N N Parent Sample Type N Parent Sample Code Depth (feet bgs) 0-2 6-8 0-2 Chemical SCOs Cleanup Guidance Unit Result Q Result Q Result Q YLENE 500000 260 µg/kg 1.8 U 1.6 U 1.7 U YL ACETATE NL NL µg/kg 0.89 U 0.8 U 0.87 U YL CYLOHEXANE NL NL µg/kg 0.89 U 0.8 U 0.87 U YL ENE 500000 P30 µg/kg 0.89 U 0.8 U 0.87 U YL COLOREXANE NL NL µg/kg 0.89 U 0.8 U 0.87 U ENE NL NL µg/kg 0.89 U	Sample Date 9/7/2016 N <th< td=""><td>Sample Date Sample Date Sample Type Parent Sample Code Depth (feet bgs) 0-2 0-7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 N NYSDEC Commercial Use NYSDEC CP-51 Soil Cleanup Guidance Unit Result Q Result Q Result Q Result Q Result Q NYSDEC Commercial Use NYSDEC Cle-51 Soil Cleanup Guidance Unit Result Q Result Q Result Q Result Q YVEDEC <th colsp<="" colspan="6" td=""><td>Sample Date 9/7/2016 N</td><td>Sample Date 9/7/2016 9/7 9/7 1 1 0 2/2 1 1 1<td>Sample Date Sample Date Sample Type Sample Date Sample Type 9/7/2016 9/7/2</td><td>Sample Date Sample Date 9/7/2016</td><td>Sample Date 9/7/2016</td></td></th></td></th<>	Sample Date Sample Date Sample Type Parent Sample Code Depth (feet bgs) 0-2 0-7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 9/7/2016 N NYSDEC Commercial Use NYSDEC CP-51 Soil Cleanup Guidance Unit Result Q Result Q Result Q Result Q Result Q NYSDEC Commercial Use NYSDEC Cle-51 Soil Cleanup Guidance Unit Result Q Result Q Result Q Result Q YVEDEC <th colsp<="" colspan="6" td=""><td>Sample Date 9/7/2016 N</td><td>Sample Date 9/7/2016 9/7 9/7 1 1 0 2/2 1 1 1<td>Sample Date Sample Date Sample Type Sample Date Sample Type 9/7/2016 9/7/2</td><td>Sample Date Sample Date 9/7/2016</td><td>Sample Date 9/7/2016</td></td></th>	<td>Sample Date 9/7/2016 N</td> <td>Sample Date 9/7/2016 9/7 9/7 1 1 0 2/2 1 1 1<td>Sample Date Sample Date Sample Type Sample Date Sample Type 9/7/2016 9/7/2</td><td>Sample Date Sample Date 9/7/2016</td><td>Sample Date 9/7/2016</td></td>						Sample Date 9/7/2016 N	Sample Date 9/7/2016 9/7 9/7 1 1 0 2/2 1 1 1 <td>Sample Date Sample Date Sample Type Sample Date Sample Type 9/7/2016 9/7/2</td> <td>Sample Date Sample Date 9/7/2016</td> <td>Sample Date 9/7/2016</td>	Sample Date Sample Date Sample Type Sample Date Sample Type 9/7/2016 9/7/2	Sample Date Sample Date 9/7/2016	Sample Date 9/7/2016

Bolded - detected

all results are in $\mu g/kg$ except blanks are in $\mu g/L$

µg/kg - microgram per kilogram

 $\mu\text{g/L}$ - micrograms per liter

bgs - below ground surface

FD - field duplicate

RB - rinsate blank

TB - trip blank

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental

Conservation

Q - qualifier

RSLs - regional screening levels

SCO - soil cleanup objective

J - estimated result

J+ - estimated result, biased high

U - non-detect

ethylbenzene not reported for trip blank and rinsate blank

									r	r			1				
			Sa	mple ID	SB-07-A	SB-07-B	SB-08	-A	SB-08-B	SB-09-A	SB-09-B	SB-10-A	SB-10-B	SB-11-A	SB-11-B	RB-01	TB-01
			Loc	ation ID	SB-07	SB-07	SB-0	8	SB-08	SB-09	SB-09	SB-10	SB-10	SB-11	SB-11		
			Samp	ole Date	9/8/2016	9/8/2016	9/7/20	016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/9/2016	9/9/2016
			Samp	ole Type	N	N	N		N	N	N	N	Ν	N	N	RB	ТВ
			Parent Samp	le Code													
			Depth (fe	eet bgs)	0-1	9-11	0-2		5-7	0-2	8-10	0-2	8-10	0-2	8-10		
		NYSDEC															
		Commercial Use	NYSDEC CP-51 Soil														
CAS No.	Chemical	SCOs	Cleanup Guidance	Unit	Result Q	Result C	Q Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result (Q Result (ر Result Q
71-55-6	1,1,1-TRICHLOROETHANE	500000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NL	600	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETH	NL	6000	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 UJ	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
79-00-5	1,1,2-TRICHLOROETHANE	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
75-34-3	1,1-DICHLOROETHANE	240000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	ן 1	J 1 U
75-35-4	1,1-DICHLOROETHENE	500000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
87-61-6	1,2,3-TRICHLOROBENZENE	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
120-82-1	1,2,4-TRICHLOROBENZENE	NL	3400	µg/kg	1.2 UJ	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	NL	NL	µg/kg	6 U	4.4 L	J 5.	.2 U	4.8 U	5.3 U	4.9 U	4.4 U	4.4 U	4.6 U	4.3	J 2 I	J 2 U
106-93-4	1,2-DIBROMOETHANE	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
95-50-1	1,2-DICHLOROBENZENE	500000	NL	µg/kg	1.2 UJ	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
107-06-2	1,2-DICHLOROETHANE	30000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
78-87-5	1,2-DICHLOROPROPANE	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
541-73-1	1,3-DICHLOROBENZENE	280000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
106-46-7	1,4-DICHLOROBENZENE	130000	NL	µg/kg	1.2 UJ	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
78-93-3	2-BUTANONE (MEK)	500000	300	µg/kg	24 U	17 L	J 2	21 U	19 U	21 U	20 U	18 U	18 U	19 U	17	J 3.1 J	2.5 J
591-78-6	2-HEXANONE	NL	NL	µg/kg	6 U	4.4 L	J 5.	.2 U	4.8 U	5.3 U	4.9 U	4.4 U	4.4 U	4.6 U	4.3	J 1 I	J 1 U
108-10-1	4-METHYL-2-PENTANONE (MIBK)	NL	1000	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
67-64-1	ACETONE	500000	NL	µg/kg	7.6 J	2.2 J	5.	. 6 J	9.6 UJ	3.9 J	5.5 J	64 J	8.8 UJ	18 J	0.84	16	13
71-43-2	BENZENE	44000	60	µg/kg	0.72 U	0.52 L	J 0.6	52 U	0.57 U	0.63 U	0.59 U	0.53 U	0.53 U	0.56 U	0.51	J 0.6 l	J 0.6 U
74-97-5	BROMOCHLOROMETHANE	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
75-27-4	BROMODICHLOROMETHANE	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
75-25-2	BROMOFORM	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
74-83-9	BROMOMETHANE	NL	NL	µg/kg	12 U	8.7 L	1 1	.0 U	9.6 U	11 U	9.8 U	8.8 U	8.8 U	9.3 U	8.5	J 1 I	J 1 U
75-15-0	CARBON DISULFIDE	NL	2700	µg/kg	1.2 U	0.65 J		1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
56-23-5	CARBON TETRACHLORIDE	22000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 l	J 0.6 U
108-90-7	CHLOROBENZENE	500000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
75-00-3	CHLOROETHANE	NL	1900	µg/kg	2.4 U	1.7 L	J 2.	.1 U	1.9 U	2.1 U	2 U	1.8 U	1.8 U	1.9 U	1.7	ן 1	J 1 U
67-66-3	CHLOROFORM	350000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
74-87-3	CHLOROMETHANE	NL	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.82 J
156-59-2	CIS-1,2-DICHLOROETHENE	500000	NL	µg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
10061-01-5	CIS-1,3-DICHLOROPROPENE	NL	NL	μg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
110-82-7	CYCLOHEXANE	NL	NL	μg/kg	2.4 U	1.7 U	J 2.	.1 U	1.9 U	2.1 U	2 U	1.8 U	1.8 U	1.9 U	1.7	J 0.6 I	J 0.6 U
124-48-1	DIBROMOCHLOROMETHANE	NL	NL	μg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
75-71-8	DICHLORODIFLUOROMETHANE	NL	NL	μg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	U 88.0	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U
100-41-4	ETHYLBENZENE	390000	1000	μg/kg	1.2 U	0.87 L	J 0.8	19 J	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J	
98-82-8	ISOPROPYLBENZENE	NL	2300	μg/kg	1.2 U	0.87 L	J	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85	J 0.6 I	J 0.6 U

			Sa	mple ID	SB-07-A	SB-07-B	SB-08-A	SB-08-B	SB-09-A	SB-09-B	SB-10-A	SB-10-B	SB-11-A	SB-11-B	RB-01	TB-01
			Loc	ation ID	SB-07	SB-07	SB-08	SB-08	SB-09	SB-09	SB-10	SB-10	SB-11	SB-11		
			Sam	ole Date	9/8/2016	9/8/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/9/2016	9/9/2016
			Samp	ole Type	N	Ν	N	N	N	N	N	Ν	Ν	Ν	RB	ТВ
			Parent Samp	le Code												
			Depth (f	eet bgs)	0-1	9-11	0-2	5-7	0-2	8-10	0-2	8-10	0-2	8-10		
		NYSDEC														
		Commercial Use	NYSDEC CP-51 Soil													
CAS No.	Chemical	SCOs	Cleanup Guidance	Unit	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
179601-23-1	M,P-XYLENE	500000	260	µg/kg	2.4 U	1.7 U	3.6	1.9 U	2.1 U	2 U	1.8 U	1.8 U	1.9 U	1.7 U	1.2 U	1.2 U
79-20-9	METHYL ACETATE	NL	NL	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	1 U	1 U
1634-04-4	METHYL TERT-BUTYL ETHER	500000	930	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
108-87-2	METHYLCYLOHEXANE	NL	NL	µg/kg	1.2 U	0.87 U	1.3	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
75-09-2	METHYLENE CHLORIDE	500000	NL	µg/kg	6 U	4.4 U	5.2 U	4.8 U	5.3 U	4.9 U	4.4 U	4.4 U	4.6 U	4.3 U	0.6 U	0.34 J
95-47-6	O-XYLENE	500000	260	µg/kg	1.2 U	0.87 U	2.4	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
100-42-5	STYRENE	NL	NL	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
127-18-4	TETRACHLOROETHENE	150000	NL	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
108-88-3	TOLUENE	500000	700	µg/kg	1.2	0.87 U	2.4	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.65 J	0.85 U	0.6 U	0.6 U
156-60-5	TRANS-1,2-DICHLOROETHENE	500000	NL	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
10061-02-6	TRANS-1,3-DICHLOROPROPENE	NL	NL	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
79-01-6	TRICHLOROETHENE	200000	NL	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
75-69-4	TRICHLOROFLUOROMETHANE	NL	NL	µg/kg	1.2 U	0.87 U	1 U	0.96 U	1.1 U	0.98 U	0.88 U	0.88 U	0.93 U	0.85 U	0.6 U	0.6 U
75-01-4	VINYL CHLORIDE	13000	NL	µg/kg	0.96 U	0.7 U	0.83 U	0.77 U	0.84 U	0.79 U	0.71 U	0.7 U	0.74 U	0.68 U	0.6 U	0.6 U
							· · · · · · · · · · · · · · · · · · ·									

Bolded - detected

all results are in μ g/kg except blanks are in μ g/L

µg/kg - microgram per kilogram

µg/L - micrograms per liter

bgs - below ground surface

FD - field duplicate

RB - rinsate blank

TB - trip blank

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental

Conservation

Q - qualifier

RSLs - regional screening levels

SCO - soil cleanup objective

J - estimated result

J+ - estimated result, biased high

U - non-detect

ethylbenzene not reported for trip blank and rinsate blank

		Sai	mple ID	SB-01-A	SB-01-B	SB-03-A	SB-03-B	SB-04-A	SB-04-B	SB-05-A	SB-05-B	SB-06-A	SB-06-B
		Samp	le Date	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016
		Loca	ation ID	SB-01	SB-01	SB-03	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-06
		Samp	le Type	N	N	Ν	Ν	N	N	N	N	N	N
		Parent Samp	le Code										
		Depth (fe	eet bgs)	0-2	6-8	0-2	5-7	0-2	9-11	0-4	5.5-9.5	0-2	7-9
		NYSDEC											
		Commercial											
CAS No.	Chemical	Use SCOs	Unit	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
68334-30-5	DIESEL RANGE ORGANICS	NL	mg/kg	9.6 J-	1.8 U	0.92 J	28	4.5 J+	0.98 J	1.7 J	0.72 J-	1.1 J	1.3 J
8006-61-9	GASOLINE RANGE ORGANICS	NL	mg/kg	4.1 UJ	3.8 U	J 4.1 UJ	12	3.7 UJ	3.7	4.4 UJ	3.6 UJ	2.6 UJ	4.7 UJ

Bolded - detected

all results are in mg/kg except rinsate blank is in μ g/L

mg/kg - milligram per kilogram

 μ g/L - microgram per liter

bgs - below ground surface

ID - identification

N - normal

FD - field duplicate

RB - rinsate blank

No. - number

NL - not listed

NYSDEC - New York StateDepartment of Environmental Conservation

Q - qualifier

SCO - soil cleanup objective

J - estimated result

J+ - estimated result, biased high

J- = estimated result, biased low

U - non-detect

UJ - estimated non detect

		Sa	mple ID	SB-906-B	SB-07-A	SB-07-B	SB-08-A	SB-08-B	SB-09-A	SB-09-B	SB-10-A	SB-10-B	SB-11-A	SB-11-B	RB-01
		Samp	ole Date	9/8/2016	9/8/2016	9/8/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/9/2016
		Loca	ation ID	SB-06	SB-07	SB-07	SB-08	SB-08	SB-09	SB-09	SB-10	SB-10	SB-11	SB-11	
		Samp	ole Type	FD	N	N	N	Ν	N	N	N	N	N	N	RB
		Parent Samp	le Code	SB-06-B											
		Depth (fe	eet bgs)	7-9	0-1	9-11	0-2	5-7	0-2	8-10	0-2	8-10	0-2	8-10	
		NYSDEC													
		Commercial													
CAS No.	Chemical	Use SCOs	Unit	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
68334-30-5	DIESEL RANGE ORGANICS	NL	mg/kg	1.6 J-	250 J-	1.8 J-	1.4 J	1.8	5.4 J-	0.92 J	1.9 J-	1.7 J	14 J+	0.48 J-	64 J
8006-61-9	GASOLINE RANGE ORGANICS	NL	mg/kg	4.3 U	14 J+	3.4 UJ	4.2 UJ	4.3 UJ	3.9 UJ	4.5 UJ	3.8 UJ	4.1 UJ	5.7	3.5 UJ	23 J

Bolded - detected

all results are in mg/kg except rinsate blank is in $\mu\text{g/L}$

mg/kg - milligram per kilogram

 $\mu\text{g/L}$ - microgram per liter

bgs - below ground surface

ID - identification

N - normal

FD - field duplicate

RB - rinsate blank

No. - number

NL - not listed

NYSDEC - New York StateDepartment of Environmental Conservation

Q - qualifier

SCO - soil cleanup objective

J - estimated result

J+ - estimated result, biased high

J- = estimated result, biased low

U - non-detect

UJ - estimated non detect

			Sa	mnle ID	SB-01-A	SB-01-B	SB-03-A	SB-03-B	SB-04-A	SB-04-B	SB-05-A	SB-05-B
				ation ID	SB-01	SB-01	SB-03	SB-03	SB-04	SB-04	SB-05	SB-05
			Sami	allo Dato	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016
			Sam		5/7/2010 N	5/7/2010 N	5/7/2010 N	5/7/2010 N	5/7/2010 N	5/7/2010 N	5/6/2010 N	5/8/2010 N
			Daront Samr	lo Codo	IN IN	IN	IN IN	IN IN	IN IN	IN	IN IN	IN
			Parent Samp	oot bac)	0.2	6.8	0.2	5.7	0.2	0.11	0.4	5505
-					0-2	0-8	0-2	5-7	0-2	9-11	0-4	3.3-3.3
		Commorcial Lico	Soil Cloopup									
CAS No	Chamical	Commercial Use	Suidanco	Unit	Decult O	Booult O	Becult O	Becult O	Decult O	Decult O	Becult O	Decult O
CAS NO.		SCUS	Guiuance	Unit ug/kg		Result Q		Result Q				
92-52-4		NL	NL	µg/kg	180 K	170 0	180 0	170 0	170 0	180 0	180 0	170 U
95-94-3		NL	NL	µg/кg	180 0	170 0	180 0	170 0	1/0 0	180 0	180 0	1/0 0
218-01-9		56000	NL	µg/кg	400 J	7.2 0	65	3.3 J	260	7.3 U	75	15
123-91-1	1,4-DIOXANE	130000	NL	µg/kg	190 0	180 U	190 0	180 U				
58-90-2	2,3,4,6-TETRACHLOROPHENOL	NL	NL	µg/kg	950 U	900 U	930 U	900 U	900 U	910 U	920 U	880 U
95-95-4	2,4,5-TRICHLOROPHENOL	NL	100	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
88-06-2	2,4,6-TRICHLOROPHENOL	NL	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
120-83-2	2,4-DICHLOROPHENOL	NL	400	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
105-67-9	2,4-DIMETHYLPHENOL	NL	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
51-28-5	2,4-DINITROPHENOL	NL	200	µg/kg	950 UJ	900 U	930 U	900 U	900 U	910 U	920 U	880 U
121-14-2	2,4-DINITROTOLUENE	NL	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
606-20-2	2,6-DINITROTOLUENE	NL	1000	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
91-58-7	2-CHLORONAPHTHALENE	NL	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
95-57-8	2-CHLOROPHENOL	NL	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
91-57-6	2-METHYLNAPHTHALENE	NL	36400	µg/kg	13 J	7.2 U	1.5 J	37	6.1 J	7.3 U	1.5 J	7.1 U
95-48-7	2-METHYLPHENOL	500000	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
88-74-4	2-NITROANILINE	NL	400	µg/kg	360 U	350 U	360 U	350 U	350 U	350 U	360 U	340 U
88-75-5	2-NITROPHENOL	NL	300	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
91-94-1	3,3'-DICHLOROBENZIDINE	NL	NL	µg/kg	1100 R	1100 U						
78-59-1	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	NL	4400	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
99-09-2	3-NITROANILINE	NL	NL	µg/kg	360 U	350 U	360 U	350 U	350 U	350 U	360 U	340 U
534-52-1	4,6-DINITRO-2-METHYLPHENOL	NL	NL	µg/kg	360 U	350 U	360 U	350 U	350 U	350 U	360 U	340 U
101-55-3	4-BROMOPHENYL PHENYL ETHER	NL	NL	µg/kg	230 U	220 U	210 U					
59-50-7	4-CHLORO-3-METHYLPHENOL	NL	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
7005-72-3	4-CHLOROPHENYL PHENYL ETHER	NL	NL	µg/kg	180 U	170 U	180 U	170 U	170 U	180 U	180 U	170 U
106-44-5	4-METHYLPHENOL	500000	NL	µg/kg	360 U	350 U	360 U	350 U	350 U	350 U	360 U	340 U
100-02-7	4-NITROPHENOL	NL	100	µg/kg	950 U	900 U	930 U	900 U	900 U	910 U	920 U	880 U
83-32-9	ACENAPHTHENE	500000	NL	μg/kg	12 J	7.2 U	7.5 U	7.2 U	4.7 J	7.3 U	7.4 J	2.8 J
208-96-8	ACENAPHTHYLENE	500000	NL	µg/kg	110	7.2 U	22	7.2 U	100	7.3 U	5.6 J	7.1 U
98-86-2	ACETOPHENONE	NL	NL	μg/kg	180 R	170 U	180 U	170 U	170 U	180 U	180 U	170 U
120-12-7	ANTHRACENE	500000	NL	ug/kg	65	7.2 U	8.2	7.2 U	44	7.3 U	20	4.6
1912-24-9	ATRAZINE	NL	NL	ug/kg	180 R	170 U	180 U	170 U	170 U	180 U	180 U	170 U
100-52-7	BENZALDEHYDE	NL	NL	ug/kg	180 R	170 U	180 U	170 U	170 U	180 U	180 U	170 U
56-55-3	BENZO(A)ANTHRACENE	5600	NI	ug/kg	350	7.2 11	69	7.2 11	260	7.3 11	83	16
50-32-8	BENZO(A)PYRENE	1000	NI	110/kg	380	7.20	72 +	2.5 1+	280 1+	1.8 +	62	15
205-99-2	BENZO(B)ELLIOBANTHENE	5600	NI	110/kg	660	7.2 03	140 +	7 2 111	460 1+	7311	120	23
191-24-2		50000	NI	110/kg	150	7.2 03	32 1+	7.2 03	130 1+	7.3 03	21	61
207-08-0		56000	NI	110/kg	100 /	7.2 03	25 1+	7.2 03	160 1±	730	30	
207-00-5		NI	122000	µ6/∿8 µg/kg	180 11	170111	120111	170	170 111	180111	18011	17011
111.01 1		NL	122000	H8/ K8	100 01	170 01	100 01	170 01	170 UJ	100 01	100 0	170 0
		NU		H8/ Kg	100 0	170 0	100 0	170 0	170 0	100 0	100 0	170 0
117 01 7		INL NU	1VL 42E000	μg/kg	1000	170 0	100 0	170 0	170 U	100 0	100	170 0
11/-01-/		INL NU	435000	µg/Kg	12 J	170 UJ	180 UJ	170 UJ	170 UJ	180 UJ	180 0	170 0
108-00-1		INL NU	INL NU	µg/Kg	180 0	170 0	180 U	1/0 0	170 U	180 0	180 0	170 U
105-00-2		INL NI	INL NI	µg/Kg	180 R	170 0	180 0	500	1/0 0	180 0	0 081	1/0 0
86-74-8	CARBAZULE	NL	NL	µg/kg	29 J	1/0 0	180 0	1/0 0	1/0 0	180 0	13 J	1/0 0

			Sa	mple ID	SB-01-A	4	SB-01	-B	SB-03-A	SB-03-B	SB-04-A	SB-04-B		SB-05-A	SB-05-I	В
			Loc	ation ID	SB-01		SB-02	1	SB-03	SB-03	SB-04	SB-04		SB-05	SB-05	
			Sam	ple Date	9/7/201	.6	9/7/20	16	9/7/2016	9/7/2016	9/7/2016	9/7/2016	6	9/8/2016	9/8/201	16
			Sam	ple Type	N		N		N	N	N	Ν		N	Ν	
			Parent Samp	ole Code												
			Depth (f	feet bgs)	0-2		6-8		0-2	5-7	0-2	9-11		0-4	5.5-9.5	;
		NYSDEC	NYSDEC CP-51													
		Commercial Use	Soil Cleanup													
CAS No.	Chemical	SCOs	Guidance	Unit	Result	Q	Result	Q	Result Q	Result Q	Result Q	Result	Q	Result Q	Result	Q
53-70-3	DIBENZO(A,H)ANTHRACENE	560	NL	µg/kg	49		7.	2 UJ	10 J+	7.2 UJ	41 J+	7.3	UJ	7.4 J	7.1	U
132-64-9	DIBENZOFURAN	350000	6200	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
84-66-2	DIETHYL PHTHALATE	NL	7100	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
131-11-3	DIMETHYL PHTHALATE	NL	27000	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
84-74-2	DI-N-BUTYLPHTHALATE	NL	8100	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
117-84-0	DI-N-OCTYLPHTHALATE	NL	120000	µg/kg	180	U	17	0 UJ	180 UJ	170 UJ	170 UJ	180	UJ	180 U	170	U
206-44-0	FLUORANTHENE	500000	NL	µg/kg	610		7.	2 U	75 J+	8	320	1.8	J	150	37	
86-73-7	FLUORENE	500000	NL	µg/kg	23	J	7.	2 U	2.2 J+	7.2 U	6.8 J	7.3	U	5.9 J	1.8	J
87-68-3	HEXACHLORO-1,3-BUTADIENE	NL	NL	µg/kg	57	U	5	4 U	56 U	54 U	54 U	55	U	56 U	53	U
118-74-1	HEXACHLOROBENZENE	6000	1400	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
77-47-4	HEXACHLOROCYCLOPENTADIENE	NL	NL	µg/kg	180	R	17	U U	180 UJ	170 UJ	170 UJ	180	UJ	180 U	170	U
67-72-1	HEXACHLOROETHANE	NL	NL	µg/kg	180	UJ	17	U U	180 UJ	170 UJ	170 UJ	180	UJ	180 U	170	U
193-39-5	INDENO(1,2,3-CD)PYRENE	5600	NL	µg/kg	140	J	7.	2 UJ	30 J+	7.2 UJ	120 J+	7.3	UJ	20	5.3	J
65794-96-9	M-CRESOL & P-CRESOL	NL	NL													
91-20-3	NAPHTHALENE	500000	12000	µg/kg	18	J	7.	2 U	3 J+	22 J+	14	7.3	U	1.9 J	7.1	U
98-95-3	NITROBENZENE	69000	170	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
621-64-7	N-NITROSO-DI-N-PROPYLAMINE	NL	NL	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
86-30-6	N-NITROSODIPHENYLAMINE	NL	NL	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
106-47-8	P-CHLOROANILINE	NL	220	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
87-86-5	PENTACHLOROPHENOL	6700	NL	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
85-01-8	PHENANTHRENE	500000	NL	µg/kg	300	J	7.	2 U	17 J+	10	110	7.3	U	99	26	
108-95-2	PHENOL	500000	NL	µg/kg	180	U	17	0 U	180 U	170 U	170 U	180	U	180 U	170	U
100-01-6	P-NITROANILINE	NL	NL	µg/kg	360	UJ	35	0 U	360 U	350 U	350 U	350	U	360 U	340	U
129-00-0	PYRENE	500000	NL	µg/kg	760	J	7.	2 U	110 J+	7.2 U	530	7.3	U	190	39	

Bolded - detected

- all results are in μ g/kg except rinsate blank is in μ g/L µg/kg - microgram per kilogram µg/L - microgram per kilogram bgs - below ground surface FD - field duplicate RB - rinsate blank ID - identification N - normal No. - number NL - not listed NYSDEC - New York State Department of Environmental Conservation Q - qualifier R - rejected result SCO - soil cleanup objective J - estimated result J+ - estimated result, biased high U - non-detect 2-methylnaphthalene, 2-methylphenol, 4-methylphenol, and phenanthrene not reported for rinsate blank
- m-cresol and p-cresol not reported for soil samples

			Sa	ample ID	SB-06-A	SB-06-B	SB-906-B	SB-07-A	SB-07-B	SB-11-A	SB-11-B	RB-01
			Loc	cation ID	SB-06	SB-06	SB-06	SB-07	SB-07	SB-11	SB-11	
			Sam	ple Date	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/9/2016
			Sam	ple Type	N	N	FD	N	N	N	N	RB
			Parent Sam	ple Code			SB-06-B					
			Depth (†	feet bgs)	0-2	7-9	7-9	0-1	9-11	0-2	8-10	
		NYSDEC	NYSDEC CP-51									
		Commercial Use	Soil Cleanup									
CAS No.	Chemical	SCOs	Guidance	Unit	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
92-52-4	1,1'-BIPHENYL	NL	NL	µg/kg	180 U	200 U	190 U	170 U	170 U	170 U	170 U	2.1 U
95-94-3	1,2,4,5-TETRACHLOROBENZENE	NL	NL	µg/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	1 U
218-01-9	1,2-BENZPHENANTHRACENE	56000	NL	µg/kg	43	2 J	12	610 J-	58	1100	7.2 U	0.15 U
123-91-1	1,4-DIOXANE	130000	NL	µg/kg	180 U	200 U	200 U	180 UJ	180 U	170 U	180 U	0.21 U
58-90-2	2,3,4,6-TETRACHLOROPHENOL	NL	NL	µg/kg	920 U	1000 U	1000 U	900 UJ	880 U	870 U	890 U	2.6 U
95-95-4	2,4,5-TRICHLOROPHENOL	NL	100	µg/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	2.6 U
88-06-2	2,4,6-TRICHLOROPHENOL	NL	NL	µg/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	1 U
120-83-2	2,4-DICHLOROPHENOL	NL	400	µg/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	2.6 U
105-67-9	2,4-DIMETHYLPHENOL	NL	NL	μg/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	2.6 U
51-28-5	2,4-DINITROPHENOL	NL	200	μg/kg	920 U	1000 U	1000 U	900 UJ	880 U	870 U	890 U	10 U
121-14-2	2,4-DINITROTOLUENE	NL	NL	μg/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	1 U
606-20-2	2.6-DINITROTOLUENE	NL	1000	ug/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	1 U
91-58-7	2-CHLORONAPHTHALENE	NL	NL	ug/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	1 U
95-57-8	2-CHLOROPHENOL	NL	NL	ug/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	10
91-57-6	2-METHYLNAPHTHALENE	NL	36400	ug/kg	7.4 U	8.1 U	8.1 U	36 J-	1.8 」	7 U	7.2 U	
95-48-7	2-METHYLPHENOL	500000	NL	ug/kg	180 U	200 U	190 U	170 UJ	170 U	170 U	170 U	
88-74-4	2-NITROANILINE	NI	400	110/kg	350 U	390 U	390 U	350 UI	340 U	340 U	340 U	1 U
88-75-5	2-NITROPHENOI	NI	300	110/kg	180 U	200 U	190 U	170 UI	170 U	170 U	170 U	2.6 U
91-94-1	3.3'-DICHLOROBENZIDINE	NL	NL	ug/kg	1100 U	1200 U	1200 U	1100 U	1100 U	1100 U	1100 U	2.6 U
78-59-1	3.5.5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	NL	4400	ug/kg	180 U	200 U	190 U	170 U	170 U	170 U	170 U	1 U
99-09-2	3-NITROANII INF	NI	NI	110/kg	350 U	390 U	390 U	350 UI	340 U	340 U	340 U	10
534-52-1	4 6-DINITRO-2-METHYLPHENOL	NI	NI	110/kg	350 U	390 U	390 U	350 UI	340 U	340 11	340 U	111
101-55-3		NI	NI	110/kg	220 U	240 11	240 11	220 11	210 U	210 U	210 U	1 1
59-50-7	4-CHLORO-3-METHYLPHENOL	NI	NI	110/kg	180 U	240 0	190 U	170 UI	170 U	170 U	170 U	261
7005-72-3		NI	NI	110/kg	180 U	200 U	190 U	170 UI	170 U	170 U	170 U	111
106-44-5		500000	NI	110/kg	350 U	390 U	390 U	69	340 U	340 U	340 U	
100-02-7		NI	100	110/kg	920 U	1000 U	1000 U	900 111	880 U	870 11	890 U	2611
83-32-9		500000	NI	110/kg	2.6	8111	2.4	39 1-	4.3	150	7211	0 15 U
208-96-8		500000	NI	110/kg	2.9	8.1 U	8.1 U	97 -	15	33	7.2 U	0.15 U
98-86-2		NI	NI	110/kg	180 U	200 U	190 U	170 111	170 U	170 U	170 U	2111
120-12-7	ANTHRACENE	500000	NI	110/kg	5.5	8111	4.8	130 -	13	330	7211	0 15 U
1912-24-9	ATRAZINE	NI	NI	110/kg	18011	20011	19011	170 111	170 11	170 111	170 11	2 1 11
100-52-7	BENZALDEHYDE	NI	NI	110/kg	180 0	200 0	190 11	170 11	170 U	170 U	170 U	2.1 0
56-55-3	BENZO(A)ANTHRACENE	5600	NI	110/kg	50	8 1 11	10	550 1-	63	1100	7211	0 15 11
50-32-8	BENZO(A)PYRENE	1000	NI	110/kg	43 1+	2 1+	11 +	640 +	59 1+	1000	7.2 0	0.15 0
205-99-2		5600	NI	μ <u>σ</u> /kg	45 J+	8111	17 +	930 1+	120 +	1400	7.2 0	0.15 0
191-24-2		50000	NI	μ <u>σ</u> /kg	18 1+	8.1 0	5.6 1+	260 1+	22 1+	380	7.2 0	0.15 0
207-09-0		56000	NI	μ <u>σ</u> /νσ	26 1	0.1 UJ	0 0 1	/200 1+	22 1+	610	7.20	0.15 0
207-00-9		NI	122000	μ <u>β</u> / Kg	120 111	200111	100111	100 1	170 11	4000	170 11	2611
111_01_1		NI	122000 NII	μ6/ NB	100 01	200 01	10011	170 111	170 0	170 11	170 0	2.00
111 44 4		NL		μg/kg	100 0	200 0	10011	170 01	170 0	170 U	170 0	2.00
117_91_7			135000		100 0	200 0	100111	56001	170 0	2201	170 0	2.0 0
108 60 1			455000	μg/ kg	100 UJ	200 01	10011	17011	170 0	170 U	170 U	2 2 2 1
105 60 2			NL NI	μg/kg	1000	200 0	10011	170 0	170 0	170 U	170 U	2.0 U
203-00-2 86.74 °		INL NI	NL	μg/kg	1000	200 0	190 0	170 0	170 U	200	170 U	2.1 U
00-74-ð	CANDALULE	INL	INL	μg/ Kg	180 0	200 0	190 0	1/0 01	1/0 0	250	1/0 0	10

			C-				1		CD.	07 4		CD 11 A	CD 11 D	,	DD 01	
			50	imple ID	SB-00-A	SB-00-B		SB-900-6	SB	07-A	SB-07-B	SB-11-A	SB-11-B CD 11	`	KB-01	
			LUC	alion iD	0/8/2016	0/0/2016	-	0/0/2010	0/0	-07 /2016	0/8/2016	0/8/2016	0/0/201	c	0/0/201	c
			Sain		9/8/2010	9/8/2010)	9/0/2010	9/0	2010	9/8/2010	9/8/2010	9/8/201	0	9/9/201	0
			Sam	pie Type	IN IN	N		FD		N	N	N	N		KB	
			Parent Samp	ble Code				SB-06-B								
		1	Depth (1	eet bgs)	0-2	7-9		7-9)-1	9-11	0-2	8-10			
		NYSDEC	NYSDEC CP-51													
		Commercial Use	Soil Cleanup													
CAS No.	Chemical	SCOs	Guidance	Unit	Result Q	Result O	Q	Result () Resul	Q	Result Q	Result Q	Result	Q	Result	Q
53-70-3	DIBENZO(A,H)ANTHRACENE	560	NL	µg/kg	6.3 J+	8.1 U	JJ	8.1	11	75 J+	7.1 J+	110	7.2	U	0.15	U
132-64-9	DIBENZOFURAN	350000	6200	µg/kg	180 U	200 U	J	190	J	170 U	170 U	68 J	170	U	1	U
84-66-2	DIETHYL PHTHALATE	NL	7100	µg/kg	180 U	200 U	J	190	J	170 U	170 U	170 U	170	U	1	U
131-11-3	DIMETHYL PHTHALATE	NL	27000	µg/kg	180 U	200 U	J	190	J	170 U	170 U	170 U	170	U	1	U
84-74-2	DI-N-BUTYLPHTHALATE	NL	8100	µg/kg	180 U	200 U	J	190	J	190	170 U	52 J	170	U	1	U
117-84-0	DI-N-OCTYLPHTHALATE	NL	120000	µg/kg	180 UJ	200 U	JJ	190	11	170 UJ	170 U.	18 J	170	U	2.6	U
206-44-0	FLUORANTHENE	500000	NL	µg/kg	81 J+	4.5 J	1	29		710	100	2800	7.2	U	0.15	U
86-73-7	FLUORENE	500000	NL	µg/kg	7.4 U	8.1 U	J	1.6		53	4.6 J	140	7.2	U	0.15	U
87-68-3	HEXACHLORO-1,3-BUTADIENE	NL	NL	µg/kg	55 U	61 U	J	60	J	54 U	53 U	53 U	54	U	1	U
118-74-1	HEXACHLOROBENZENE	6000	1400	µg/kg	180 U	200 U	J	190	J	170 U	170 U	170 U	170	U	1	U
77-47-4	HEXACHLOROCYCLOPENTADIENE	NL	NL	µg/kg	180 UJ	200 U	JJ	190	11	170 U	170 U	170 U	170	U	1	U
67-72-1	HEXACHLOROETHANE	NL	NL	µg/kg	180 UJ	200 U	JJ	190	11	170 U	170 U	170 U	170	U	1	U
193-39-5	INDENO(1,2,3-CD)PYRENE	5600	NL	µg/kg	17 J+	8.1 U	JJ	5.2	+	240 J+	21 J+	350	7.2	U	0.15	U
65794-96-9	M-CRESOL & P-CRESOL	NL	NL												5.2	U
91-20-3	NAPHTHALENE	500000	12000	µg/kg	7.4 U	8.1 U	J	8.1	J	26	2.8 J	45	7.2	U	0.15	U
98-95-3	NITROBENZENE	69000	170	µg/kg	180 U	200 U	J	190	J	170 U	170 U	170 U	170	U	2.6	U
621-64-7	N-NITROSO-DI-N-PROPYLAMINE	NL	NL	µg/kg	180 U	200 U	J	190	J	170 U	170 U	170 U	170	U	2.6	U
86-30-6	N-NITROSODIPHENYLAMINE	NL	NL	µg/kg	180 U	200 U	J	190	J	170 U	170 U	170 U	170	U	1	U
106-47-8	P-CHLOROANILINE	NL	220	µg/kg	180 U	200 U	J	190	J	170 UJ	170 U	170 U	170	U	1	U
87-86-5	PENTACHLOROPHENOL	6700	NL	µg/kg	180 U	200 U	J	190	J	170 UJ	170 U	170 U	170	U	1	U
85-01-8	PHENANTHRENE	500000	NL	µg/kg	23 J+	2.8 J	1	19		570	58	1700	7.2	U		
108-95-2	PHENOL	500000	NL	µg/kg	180 U	200 U	J	190	J	170 UJ	170 U	170 U	170	U	1	U
100-01-6	P-NITROANILINE	NL	NL	µg/kg	350 U	390 U	J	390	J	350 UJ	340 U	340 U	340	U	2.6	U
129-00-0	PYRENE	500000	NL	µg/kg	110 J+	5.7 J	I	8.1	ן 1	200	140	2900	7.2	U	0.15	U

Bolded - detected

all results are in $\mu g/kg$ except rinsate blank is in $\mu g/L$ µg/kg - microgram per kilogram µg/L - microgram per kilogram bgs - below ground surface FD - field duplicate RB - rinsate blank ID - identification N - normal No. - number NL - not listed NYSDEC - New York State Department of Environmental Conservation Q - qualifier R - rejected result SCO - soil cleanup objective J - estimated result J+ - estimated result, biased high U - non-detect 2-methylnaphthalene, 2-methylphenol, 4-methylphenol, and phenanthrene not reported for rinsate blank m-cresol and p-cresol not reported for soil samples

CDM Smith

		Sa	mple ID	SB-01-A	SB-01-B	SB-03-A	SB-03-B	SB-04-A	SB-04-B	SB-05-A	SB-05-B	SB-06-A	SB-06-B	SB-906-B	SB-07-A	SB-07-B	SB-11-A	SB-11-B	RB-01
		Loca	ation ID	SB-01	SB-01	SB-03	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-06	SB-06	SB-07	SB-07	SB-11	SB-11	
		Samp	ole Date	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/9/2016
		Samp	ole Type	N	N	N	N	Ν	Ν	N	N	N	N	FD	N	Ν	N	N	RB
		Parent Samp	le Code											SB-06-B					
		Depth (fe	eet bgs)	0-2	6-8	0-2	5-7	0-2	9-11	0-4	5.5-9.5	0-2	7-9	7-9	0-1	9-11	0-2	8-10	
		NYSDEC																	
		Commercial																	
CAS No.	Chemical	Use SCOs	Unit	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
12674-11-2	AROCLOR 1016	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.17 U
11104-28-2	AROCLOR 1221	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.17 U
11141-16-5	AROCLOR 1232	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.17 U
53469-21-9	AROCLOR 1242	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.17 U
12672-29-6	AROCLOR 1248	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.17 U
11097-69-1	AROCLOR 1254	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.17 U
11096-82-5	AROCLOR 1260	1000	µg/kg	12 J	36 U	15 J	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	35 J	36 U	27 J	35 U	0.17 U
37324-23-5	AROCLOR 1262	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.43 U
11100-14-4	AROCLOR 1268	1000	µg/kg	38 U	36 U	38 U	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	36 U	36 U	35 U	35 U	0.17 U
1336-36-3	TOTAL PCBS	1000	µg/kg	12 J	36 U	15 J	36 U	36 U	36 U	36 U	35 U	36 U	40 U	39 U	35 J	36 U	27 J	35 U	0.43 U

Bolded - detected

all results are in μ g/kg except rinsate blank is in μ g/L

µg/kg - microgram per kilogram

μg/L - microgram per liter

bgs - below ground surface

FD - field duplicate

RB - rinsate blank

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

RSLs - regional screening levels

SCO - soil cleanup objective

J - estimated result

		Sa	mple ID	SB-01-A	SB-01-B	SB-03-A	SB-03-B	SB-04-A	SB-04-B	SB-05-A	SB-05-B	SB-06-A	SB-06-B	SB-906-B	SB-07-A	SB-07-B	SB-11-A	SB-11-B	RB-01
		Loc	ation ID	SB-01	SB-01	SB-03	SB-03	SB-04	SB-04	SB-05	SB-05	SB-06	SB-06	SB-06	SB-07	SB-07	SB-11	SB-11	
		Sam	ole Date	9/7/2016	9/7/2016	9/7/201	6 9/7/2016	9/7/2016	9/7/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/9/2016
		Samp	ole Type	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν	Ν	FD	N	Ν	Ν	Ν	RB
		Parent Sa	mple ID											SB-06-B					
		Depth (f	eet bgs)	0-2	6-8	0-2	5-7	0-2	9-11	0-4	5.5-9.5	0-2	7-9	7-9	0-1	9-11	0-2	8-10	
		NYSDEC																	
		Commercial Use																	
CAS No.	Chemical	SCOs	Unit	Result Q	Result Q	Result C	Result Q	Result Q	Result Q	Result Q	Result Q								
7429-90-5	ALUMINUM	NL	mg/kg	12000	8900	11000	8700	15000	10000	12000	11000	13000	15000	12000	12000	11000	14000	11000	6.1 J
7440-36-0	ANTIMONY	NL	mg/kg	5.4	2.7	3.3	2.5	7.8	4.4	3.6	3.3	6.2	3.1	2.7	4.4	4.5	6.6	2.1	0.5 U
7440-38-2	ARSENIC	16	mg/kg	2.2	1.8	1.8	2.1	2	2	2	1.1 J	1.8	2.4	2	2	2	4.1	1.4 J	2 U
7440-39-3	BARIUM	400	mg/kg	77 J	25 J	38 J	32 J	73 J	42 J	31 J	35 J	46 J	36 J	32 J	<mark>2000</mark> J	48 J	97 J	33 J	1 U
7440-41-7	BERYLLIUM	590	mg/kg	0.047 J	0.077 J	0.13 J	0.083 J	0.094 J	0.057 J	0.12 J	0.17 J	0.11 J	0.19 J	0.16 J	0.13 J	0.17 J	0.16 J	0.2	1 U
7440-43-9	CADMIUM	9.3	mg/kg	0.25	0.043 J	0.19	0.058 J	0.53	0.075 J	0.032 J	0.18 U	0.039 J	0.085 J	0.088 J	0.75	0.049 J	1.2	0.028 J	1 U
7440-70-2	CALCIUM METAL	NL	mg/kg	5500 J	1500 J	1600 J	1200 J	1700 J	1800 J	2800 J	1600 J	1400 J	1500 J	1400 J	2500 J	1400 J	2400 J	1300 J	250 U
7440-47-3	CHROMIUM	NL	mg/kg	18	7	11	6.1	20	12	12	7.7	15	9.4	7.9	34	12	24	5.2	0.62 J
7440-48-4	COBALT	NL	mg/kg	5.9	3	3.7	2.8	8.4	4.8	3.9	3.6	6.7	3.4	3	4.9	5	7.3	2.3	1 U
7440-50-8	COPPER	270	mg/kg	58 J	30 J	38 J	23 J	67 J	35 J	33 J	32 J	48 J	27 J	25 J	240 J	45 J	96 J	28 J	1 J
7439-89-6	IRON	NL	mg/kg	16000 J	11000 J	13000 J	9100 J	21000 J	13000 J	13000 J	12000 J	17000 J	10000 J	8800 J	12000 J	15000 J	27000 J	10000 J	110 J
7439-92-1	LEAD	1000	mg/kg	34	3 J	53	3.9	76	3.9	5.9	2.9 J	4.7	6.9	6.8	570	8.2	490	2.9 J	1 U
7439-95-4	MAGNESIUM	NL	mg/kg	4700 J	2400 J	2600 J	1700 J	5300 J	3000 J	2700 J	3100 J	4000 J	1800 J	1600 J	4000 J	3300 J	4300 J	2200 J	250 U
7439-96-5	MANGANESE	10000	mg/kg	330	130	240	140	310	360	160	140	270	160	160	160	310	490	210	1.5 J
7440-02-0	NICKEL	310	mg/kg	16	5.5	9.3	4.7	18	11	8.4	9.3	14	7.4	5.9	23	11	19	4.8	6.7 J
7440-09-7	POTASSIUM	NL	mg/kg	1600	2800	1400	2100	3000	2500	1700	2500	2400	1700	1600	1700	2700	2600	2900	250 U
7782-49-2	SELENIUM	1500	mg/kg	1.5 UJ	1.4 UJ	1.4 U	IJ 1.4 UJ	1.4 UJ	1.5 UJ	1.5 UJ	1.4 UJ	1.4 UJ	1.6 UJ	1.5 UJ	1.4 UJ	1.4 UJ	1.4 UJ	1.4 UJ	5 U
7440-22-4	SILVER	1500	mg/kg	0.73 U	0.7 U	0.72 U	J 0.7 U	0.71 U	0.73 U	0.73 U	0.71 U	0.71 U	0.78 U	0.76 U	0.71 U	0.71 U	0.69 U	0.71 U	0.28 J
7440-23-5	SODIUM	NL	mg/kg	250 J	190 J	170 J	130 J	220 J	170 J	220 J	140 J	110 J	180 J	140 J	210 J	140 J	120 J	100 J	250 U
7440-28-0	THALLIUM	NL	mg/kg	1.5 UJ	1.4 UJ	1.4 U	IJ 1.4 UJ	1.4 UJ	1.5 UJ	1.5 UJ	1.4 UJ	1.4 UJ	1.6 UJ	1.5 UJ	1.4 UJ	1.4 UJ	1.4 UJ	1.4 UJ	1 U
7440-62-2	VANADIUM	NL	mg/kg	28 J	12 J	15 J	10 J	29 J	17 J	16 J	11 J	22 J	17 J	13 J	18 J	17 J	28 J	9.1 J	1 U
7440-66-6	ZINC	10000	mg/kg	62 J	34 J	150 J	31 J	56 J	41 J	32 J	31 J	48 J	48 J	38 J	2200 J	44 J	160 J	32 J	9.6 J

Bolded - detected

exceeds NYSDEC Commercial Use SCOs

all results are in mg/kg except rinsate blank is in μ g/L

mg/kg - milligram per kilogram

μg/L - microgram per liter

bgs - below ground surface

- FD field duplicate
- RB rinsate blank

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

SCO - soil cleanup objective

J- = estimated result, biased low

U - non-detect

UJ - estimated non detect

		San	nple ID	MW-1-A	MW-91-A	MW-2-A	GW-01-A	GW-05-A	GW-09-A	GW-11-A	PW-01-A	RB-02	TB-02
		Loca	tion ID	MW-1	MW-1	MW-2	GW-01	GW-05	GW-09	GW-11	PW-01		
		Sampl	e Date	9/9/2016	9/9/2016	9/12/2016	9/9/2016	9/9/2016	9/12/2016	9/12/2016	9/12/2016	9/9/2016	9/12/2016
		Sampl	е Туре	Ν	FD	N	N	N	N	N	N	RB	ТВ
		Parent Sample	e Code		MW-1-A								
		Depth (fe	et bgs)	10.6-20	10.6-20	10.79-12	9.57-13	11-12.3	11.13-13.4	10.5-12.6	N/A		
		NYSDEC Standards and											
		Guidance Values for Class											
CAS No.	Chemical	GA Groundwater (AWQS)	Unit	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q		Result Q	Result Q
71-55-6	1,1,1-TRICHLOROETHANE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	5	μg/L	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 U	0.6 U
79-00-5	1,1,2-TRICHLOROETHANE	1	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-34-3	1,1-DICHLOROETHANE	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
75-35-4	1,1-DICHLOROETHENE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
87-61-6	1,2,3-TRICHLOROBENZENE	5	μg/L	0.6 UJ	0.6 UJ	0.6 UJ	0.6 U	0.6 U	0.6 UJ	0.6 UJ	0.6 UJ	0.6 U	0.6 U
120-82-1	1,2,4-TRICHLOROBENZENE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
96-12-8	1,2-Dibromo-3-Chloropropane	0.04	μg/L	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
106-93-4	1,2-DIBROMOETHANE	0.0006	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
95-50-1	1,2-DICHLOROBENZENE	3	μg/L	3.2	3.1	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
107-06-2	1,2-DICHLOROETHANE	0.6	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
78-87-5	1,2-DICHLOROPROPANE	1	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
541-73-1	1,3-DICHLOROBENZENE	3	μg/L	0.73 J	0.74 J	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
106-46-7	1,4-DICHLOROBENZENE	3	μg/L	15	14	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
78-93-3	2-Butanone (MEK)	50	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2.4 J	2.8 J
591-78-6	2-Hexanone	50	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	NL	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
67-64-1	ACETONE	50	μg/L	10 UJ	10 UJ	17	10 UJ	19	10 U	10 U	10 U	14	13
71-43-2	BENZENE	1	μg/L	0.75 J	0.74 J	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
74-97-5	BROMOCHLOROMETHANE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-27-4	BROMODICHLOROMETHANE	50	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-25-2	BROMOFORM	50	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
74-83-9	BROMOMETHANE	5	μg/L	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
75-15-0	CARBON DISULFIDE	60	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.87 J	0.6 U	0.6 U	0.6 U
56-23-5	CARBON TETRACHLORIDE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U

		Sa	mple ID	MW-1-A	MW-91-A	MW-2-A	GW-01-A	GW-05-A	GW-09-A	GW-11-A	PW-01-A	RB-02	TB-02
		Loc	ation ID	MW-1	MW-1	MW-2	GW-01	GW-05	GW-09	GW-11	PW-01		
		Sam	ole Date	9/9/2016	9/9/2016	9/12/2016	9/9/2016	9/9/2016	9/12/2016	9/12/2016	9/12/2016	9/9/2016	9/12/2016
		Sam	ole Type	Ν	FD	N	Ν	N	N	N	N	RB	ТВ
		Parent Samp	le Code		MW-1-A								
		Depth (f	eet bgs)	10.6-20	10.6-20	10.79-12	9.57-13	11-12.3	11.13-13.4	10.5-12.6	N/A		
108-90-7	CHLOROBENZENE	5	μg/L	<mark>79</mark>	<mark>76</mark>	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-00-3	CHLOROETHANE	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
67-66-3	CHLOROFORM	7	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
74-87-3	CHLOROMETHANE	5	μg/L	1 UJ	1 UJ	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.65 J
156-59-2	CIS-1,2-DICHLOROETHENE	5	μg/L	0.5 J	0.46 J	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
10061-01-5	CIS-1,3-DICHLOROPROPENE	0.4	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
110-82-7	CYCLOHEXANE	NL	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
124-48-1	DIBROMOCHLOROMETHANE	50	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-71-8	DICHLORODIFLUOROMETHANE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
98-82-8	ISOPROPYLBENZENE	5	μg/L	0.6 U	0.6 U	3.6	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
179601-23-1	M,P-XYLENE	5	μg/L	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
79-20-9	METHYL ACETATE	NL	μg/L	1 U	1 U	1 U	1 U	1.2 J	1 U	1 U	5.5	1 U	1 U
1634-04-4	METHYL TERT-BUTYL ETHER	10	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
108-87-2	METHYLCYLOHEXANE	NL	μg/L	0.6 U	0.6 U	1.6	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-09-2	METHYLENE CHLORIDE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.29 J	0.3 J
95-47-6	O-XYLENE	5	μg/L	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 UJ	0.6 U	0.6 U
100-42-5	STYRENE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 UJ	0.6 UJ	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
127-18-4	TETRACHLOROETHENE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
108-88-3	TOLUENE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.98 J	0.6 U	0.6 U
156-60-5	TRANS-1,2-DICHLOROETHENE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
10061-02-6	TRANS-1,3-DICHLOROPROPENE	0.4	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
79-01-6	TRICHLOROETHENE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-69-4	TRICHLOROFLUOROMETHANE	5	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
75-01-4	VINYL CHLORIDE	2	μg/L	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U

Bolded - detection

exceeds NYSDEC AWQS

µg/L - microgram per liter

AWQS - Ambient Water Quality Standards bgs - below ground surface FD - field duplicate ID - identification N - normal N/A - not available No. - number

RB - rinsate blank NYSDEC - New York State Department of Environmental Conservation Q - qualifier J - estimated result TB - trip blank UJ - estimated non-detect U - non-detect NL - not listed

Table 4-2bGroundwater Sample Detections – TPH77 Westchester Avenue, Pound Ridge/Scotts Corners Site

	Sam	ple ID	MW-1	-A	MW-91-A	GW-01-A	GW-11	L-A	GW-09-A	GW-05-B	MW-2-	A	RB-02	
	Locat	ion ID	MW-	·1	MW-1	GW-01	GW-1	1	GW-09	GW-05	MW-2			
	Sample	e Date	9/9/20)16	9/9/2016	9/9/2016	5 9/12/2	016	9/12/2016	9/12/2016	9/12/20	16	9/9/201	.6
	Sample	е Туре	N		FD	N	Ν		Ν	Ν	N		RB	
	Parent Sample	Code			MW-1-A									
	Depth (fee	et bgs)	10.6-2	20	10.6-20	9.57-13	10.5-1	2.6	11.13-13.4	11-12.3	10.79-1	2		
CAS No.	Chemical	Unit	Result	Q	Result Q	Result Q	Result	α	Result Q	Result Q	Result C	λ Ι	Result C	ຼ
68334-30-5 DIESEL RANGE ORGANICS μg/L		μg/L	190	UJ	270 J	NA	NA		140 J	NA	NA		50 J	
8006-61-9	GASOLINE RANGE ORGANICS	μg/L	120		120	100 UJ	100	U	100 U	100 U	390		23 J	

 μ g/L - microgram per liter

AWQS - Ambient Water Quality Standards

bgs - below ground surface

FD - field duplicate

RB - rinsate blank

ID - identification

N - normal

NA - not analyzed

No. - number

Q - qualifier

J - estimated result

UJ - estimated non-detect

		Sam	DI ela	MW-1-A	MW-91-A	PW-01-A	RB-02
		Locat	tion ID	MW-1	MW-1	PW-01	
		Sampl	e Date	9/9/2016	9/9/2016	9/12/2016	9/9/2016
		Sampl	e Type	N	FD	N	RB
		Parent Sample	• Code		MW-1-A		
		Denth (fer	et høs)	10 6-20	10.6-20		
		NYSDEC Standards and		1010 10	10.0 20		
		Guidance Values for					
		Class GA Groundwater					
CAS No.	Chemical	(AWOS)	Unit	Result O	Result O	Result O	Result O
95-52-4	1.1-BIPHENYL	NL	ug/L	1.9 R	1.9 U	2.1 UJ	2 U
95-94-3	1.2.4.5-TETRACHLOROBENZENE	5	ug/L	0.96 U	0.94 U	1.1 U	1 U
218-01-9	1.2-BENZPHENANTHRACENE	0.002	ug/L	0.14 U	0.41	0.16 U	0.15 U
123-91-1	1,4-DIOXANE	NL	μg/L	0.19 U	0.19 U	0.21 U	0.2 U
58-90-2	2,3,4,6-TETRACHLOROPHENOL	NL	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
95-95-4	2,4,5-TRICHLOROPHENOL	NL	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
88-06-2	2,4,6-TRICHLOROPHENOL	NL	μg/L	0.96 U	0.94 U	1.1 U	1 U
120-83-2	2,4-DICHLOROPHENOL	5	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
105-67-9	2,4-DIMETHYLPHENOL	50	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
51-28-5	2,4-DINITROPHENOL	10	μg/L	9.6 U	9.4 U	11 U	10 U
121-14-2	2,4-DINITROTOLUENE	5	μg/L	0.96 U	0.94 U	1.1 U	1 U
606-20-2	2,6-DINITROTOLUENE	5	μg/L	0.96 U	0.94 U	1.1 U	1 U
91-58-7	2-CHLORONAPHTHALENE	NL	μg/L	0.96 U	0.94 U	1.1 U	1 U
95-57-8	2-CHLOROPHENOL	NL	μg/L	0.96 U	0.94 U	1.1 U	1 U
88-74-4	2-NITROANILINE	5	μg/L	0.96 U	0.94 U	1.1 U	1 U
88-75-5	2-NITROPHENOL	NL	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
91-94-1	3,3'-DICHLOROBENZIDINE	5	μg/L	2.4 R	2.4 U	2.6 U	2.5 U
78-59-1	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	50	μg/L	0.96 U	0.94 U	1.1 U	1 U
99-09-2	3-NITROANILINE	5	μg/L	0.96 U	0.94 U	1.1 U	1 U
534-52-1	4,6-DINITRO-2-METHYLPHENOL	NL	μg/L	0.96 U	0.94 U	1.1 UJ	1 U
101-55-3	4-BROMOPHENYL PHENYL ETHER	NL	μg/L	0.96 U	0.94 U	1.1 U	1 U
59-50-7	4-CHLORO-3-METHYLPHENOL	NL	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
7005-72-3	4-CHLOROPHENYL PHENYL ETHER	NL	μg/L	0.96 U	0.94 U	1.1 U	1 U
100-02-7	4-NITROPHENOL	NL	μg/L	2.4 U	2.4 U	5.3 U	2.5 U
83-32-9	ACENAPHTHENE	NL	μg/L	0.14 U	0.14 U	2.6 U	0.15 U
208-96-8	ACENAPHTHYLENE	NL	μg/L	0.14 U	0.14 U	0.16 U	0.15 U
98-86-2	ACETOPHENONE	NL	μg/L	1.9 U	1.9 U	0.16 U	2 U
120-12-7	ANTHRACENE	50	μg/L	0.14 U	0.14 U	2.1 UJ	0.15 U
1912-24-9	ATRAZINE	7.5	μg/L	1.9 R	1.9 UJ	0.16 U	2 U
100-52-7	BENZALDEHYDE	NL	μg/L	1.9 UJ	1.9 UJ	2.1 UJ	2 U
56-55-3	BENZO(A)ANTHRACENE	0.002	μg/L	0.14 U	0.28	2.1 UJ	0.15 U

		Sam	nole ID	MW-1-A	MW-91-A	PW-01-A	RB-02
		Locat	tion ID	MW-1	MW-1	PW-01	
		Sample	e Date	9/9/2016	9/9/2016	9/12/2016	9/9/2016
		Sample	e Type	N	FD	N N	RB
		Parent Sample	- Code		MW-1-A		
		Depth (fee	et bgs)	10.6-20	10.6-20		
	Ι	NYSDEC Standards and					
		Guidance Values for					
1		Class GA Groundwater					
CAS No.	Chemical	(AWQS)	Unit	Result Q	Result Q	Result Q	Result Q
50-32-8	BENZO(A)PYRENE	NL	µg/L	0.14 U	0.34	0.16 U	0.15 U
205-99-2	BENZO(B)FLUORANTHENE	0.002	μg/L	0.14 U	0.52	0.16 U	0.15 U
191-24-2	BENZO(G,H,I)PERYLENE	NL	μg/L	0.14 U	0.28	0.16 U	0.15 U
207-08-9	BENZO(K)FLUORANTHENE	0.002	μg/L	0.14 U	0.14 J	0.16 U	0.15 U
85-68-7	BENZYL BUTYL PHTHALATE	50	μg/L	2.4 U	2.4 U	0.16 U	2.5 U
111-91-1	BIS(2-CHLOROETHOXY)METHANE	5	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
111-44-4	BIS(2-CHLOROETHYL) ETHER	1	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
117-81-7	BIS(2-ETHYLHEXYL)PHTHALATE	5	μg/L	0.96 U	0.94 U	2.6 U	1 U
108-60-1	BIS-CHLOROISOPROPYL ETHER	5	µg/L	2.4 U	2.4 U	1.1 U	2.5 U
105-60-2	CAPROLACTAM	NL	µg/L	1.9 R	1.9 R	2.6 U	2 U
86-74-8	CARBAZOLE	NL	µg/L	0.96 U	0.94 U	2.1 UJ	1 U
53-70-3	DIBENZO(A,H)ANTHRACENE	NL	μg/L	0.14 U	0.075 J	1.1 U	0.15 U
132-64-9	DIBENZOFURAN	NL	μg/L	0.96 U	0.94 U	0.16 U	1 U
84-66-2	DIETHYL PHTHALATE	50	μg/L	0.96 U	0.94 U	1.1 U	1 U
131-11-3	DIMETHYL PHTHALATE	50	μg/L	0.96 U	0.94 U	1.1 U	1 U
84-74-2	DI-N-BUTYLPHTHALATE	50	μg/L	0.96 U	0.94 U	1.1 U	1 U
117-84-0	DI-N-OCTYLPHTHALATE	50	μg/L	2.4 U	2.4 U	1.1 U	2.5 U
206-44-0	FLUORANTHENE	50	μg/L	0.14 U	0.78	2.6 U	0.15 U
86-73-7	FLUORENE	50	μg/L	0.14 U	0.14 U	0.16 U	0.15 U
87-68-3	HEXACHLORO-1,3-BUTADIENE	0.5	μg/L	0.96 U	0.94 U	0.16 U	1 U
118-74-1	HEXACHLOROBENZENE	0.04	μg/L	0.96 U	0.94 U	1.1 U	1 U
77-47-4	HEXACHLOROCYCLOPENTADIENE	5	μg/L	0.96 U	0.94 U	1.1 U	1 U
67-72-1	HEXACHLOROETHANE	5	μg/L	0.96 U	0.94 U	1.1 UJ	1 U
193-39-5	INDENO(1,2,3-CD)PYRENE	0.002	μg/L	0.14 U	0.24	1.1 U	0.15 U
65794-96-9	M-CRESOL & P-CRESOL	NL	μg/L	4.8 U	4.7 U	0.16 U	5 U
91-20-3	NAPHTHALENE	NL	μg/L	0.14 UJ	0.14 U	0.16 U	0.1 J
98-95-3	NITROBENZENE	0.4	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
621-64-7	N-NITROSO-DI-N-PROPYLAMINE	NL	μg/L	2.4 U	2.4 U	2.6 U	2.5 U
86-30-6	N-NITROSODIPHENYLAMINE	50	μg/L	0.96 UJ	0.94 U	1.1 U	1 U
106-47-8	P-CHLOROANILINE	5	μg/L	0.96 U	0.94 U	1.1 U	1 U
87-86-5	PENTACHLOROPHENOL	2	μg/L	0.96 U	0.94 U	1.1 U	1 U

		Sam	ple ID	MW-1-A	MW-91-A	PW-01-A	RB-02	
		Locat	ion ID	MW-1	MW-1	PW-01		
		Sample	e Date	9/9/2016	9/9/2016	9/12/2016	9/9/201	.6
		Sample	е Туре	Ν	FD	N	RB	
		Parent Sample	Code		MW-1-A			
		Depth (fee	et bgs)	10.6-20	10.6-20			
		NYSDEC Standards and						
		Guidance Values for						
		Class GA Groundwater						
CAS No.	Chemical	(AWQS)	Unit	Result Q	Result Q	Result Q	Result	Q
108-95-2	PHENOL	2	μg/L	0.96 UJ	0.94 UJ	1.1 U	1	U
100-01-6	P-NITROANILINE	5	μg/L	2.4 U	2.4 U	2.6 U	2.5	U
129-00-0	PYRENE	50	μg/L	0.14 U	0.68	0.16 U	0.15	U

Bolded - detection

exceeds NYSDEC AWQS

μg/L - microgram per liter

AWQS - Ambient Water Quality Standards

bgs - below ground surface

FD - field duplicate

RB - rinsate blank

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

R - rejected result

J - estimated result

UJ - estimated non-detect

Table 4-2dGroundwater Sample Detections – PCBs77 Westchester Avenue, Pound Ridge/Scotts Corners Site

			Sample ID	MW-1	-A	MW-91	L-A	RB-0	2
			Location ID	MW-	1	MW-	1		
			Sample Date	9/9/20	16	9/9/20	16	9/9/20)16
			Sample Type	N		FD		RB	
		Pai	rent Sample Code			MW-1	-A		
			Depth (feet bgs)	10.6-2	20	10.6-2	20		
		NYSDEC Standards							
		and Guidance Values							
		for Class GA							
		Groundwater							
CAS No.	Chemical	(AWQS)	Unit	Result	Q	Result	Q	Result	Q
12674-11-2	AROCLOR 1016	0.09	μg/L	0.038	U	0.038	U	0.04	U
11104-28-2	AROCLOR 1221	0.09	μg/L	0.038	U	0.038	U	0.04	U
11141-16-5	AROCLOR 1232	0.09	μg/L	0.038	U	0.038	U	0.04	U
53469-21-9	AROCLOR 1242	0.09	μg/L	0.038	U	0.038	U	0.04	U
12672-29-6	AROCLOR 1248	0.09	μg/L	0.038	U	0.038	U	0.04	U
11097-69-1	AROCLOR 1254	0.09	μg/L	0.038	U	0.038	U	0.04	U
11096-82-5	AROCLOR 1260	0.09	μg/L	0.11	J	0.12	J	0.04	U
37324-23-5	AROCLOR 1262	0.09	μg/L	0.096	U	0.094	U	0.1	U
11100-14-4	AROCLOR 1268	0.09	μg/L	0.038	U	0.038	U	0.04	U
1336-36-3	TOTAL PCBS	NL	μg/L	0.11	J	0.12	UJ	0.1	U

Bolded - detection

exceeds NYSDEC AWQS

µg/L - microgram per liter

AWQS - Ambient Water Quality Standards

bgs - below ground surface

FD - field duplicate

RB - rinsate blank

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

J - estimated result

UJ - estimated non-detect

Table 4-2eGroundwater Sample Detections – Metals77 Westchester Avenue, Pound Ridge/Scotts Corners Site

	_			MW-1-/	A	MW-91-	A	PW-0)1-A	RB-	02
		Locat	ion ID	MW-1		MW-1		PW	-01		
		Sample	e Date	9/9/201	.6	9/9/201	.6	9/12/	2016	9/9/2	016
		Sample	е Туре	Ν		FD		N	I	RE	3
		Parent Sample	e Code			MW-1-	A				
		Depth (fee	et bgs)	10.6-20)	10.6-20)				
NYSDEC Standards and											
	Guidance Values for										
		Class GA Groundwater	ass GA Groundwater								
CAS No.	Chemical	(AWQS)	(AWQS) Unit		Q	Result	Q	Result	Q	Result	Q
7429-90-5	ALUMINUM	NL	NL μg/L		J	720	J	3.5	l	6.5	J
7440-36-0	-36-0 ANTIMONY 3		µg/L	2.5	UJ	2.8		2.4	l	0.75	U
7440-38-2	40-38-2 ARSENIC 25		µg/L	1.8	J	2.5	J	2	U	2	U
7440-39-3	BARIUM	1000	µg/L	39	l	42	l	17	l	1	U
7440-41-7	BERYLLIUM	3	µg/L	1	U	1	U	1	U	1	U
7440-43-9	CADMIUM	5	µg/L	1	U	1	U	1	U	1	U
7440-70-2	CALCIUM METAL	NL	µg/L	27000		26000		24000		250	U
7440-47-3	CHROMIUM	50	µg/L	20	U	20	U	1	U	1	U
7440-48-4	COBALT	NL	µg/L	5.1	J	8.2	J	0.39	l	1	U
7440-50-8	COPPER	200	µg/L	10	U	10	U	65		3	U
7439-89-6	IRON	300	µg/L	2200	J	5100	J	170	l	250	U
7439-92-1	LEAD	25	µg/L	2	J	2.7		0.85	l	1	U
7439-95-4	MAGNESIUM	35000	µg/L	7000		6700		9400		250	U
7439-96-5	MANGANESE	300	µg/L	440		700		15		0.57	J
7440-02-0	NICKEL	100	µg/L	20	UJ	20	UJ	6.1	J	6.4	J
7440-09-7	POTASSIUM	NL	µg/L	4900		4900		2400		250	U
7782-49-2	SELENIUM	10	µg/L	5	U	5	U	5	U	5	U
7440-22-4	SILVER	50	µg/L	0.3	J	1	J	1.3	J	0.5	U
7440-23-5	SODIUM	20000	μg/L	120000		130000		67000		250	U
7440-28-0	THALLIUM	0.5	μg/L	1	U	1	U	1	U	1	U
7440-62-2	VANADIUM	NL	μg/L	3.9	J	6.2	J	1.1	J	1	U
7440-66-6	ZINC	2000	μg/L	100	UJ	100	UJ	170		15	J

Bolded - detection

exceeds NYSDEC AWQS

 μ g/L - microgram per liter

AWQS - Ambient Water Quality Standards

- bgs below ground surface
- FD field duplicate
- RB rinsate blank
- ID identification
- N normal
- No. number
- NL not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

J - estimated result

UJ - estimated non-detect

Sample ID PW- Location ID PW									
			Locat	tion ID	PW-01				
			Sample	e Date	9/12/2016				
			Sample	e Type	N				
			NYSDEC Standards and						
		RSLs for Tap	Guidance Values for Class						
CAS No.	Chemical	Water	GA Groundwater (AWQS)	Unit	Result Q				
71-55-6	1,1,1-TRICHLOROETHANE	800	5	μg/L	0.6 U				
79-34-5	1,1,2,2-TETRACHLOROETHANE	0.076	5	μg/L	0.6 U				
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5500	5	μg/L	0.6 UJ				
79-00-5	1,1,2-TRICHLOROETHANE	0.041	1	μg/L	0.6 U				
75-34-3	1,1-DICHLOROETHANE	2.8	5	μg/L	1 U				
75-35-4	1,1-DICHLOROETHENE	28	5	μg/L	0.6 U				
87-61-6	1,2,3-TRICHLOROBENZENE	0.7	5	μg/L	0.6 UJ				
120-82-1	1,2,4-TRICHLOROBENZENE	0.4	5	μg/L	0.6 U				
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	0.00033	0.04	μg/L	2 U				
106-93-4	1,2-DIBROMOETHANE	0.0075	0.0006	μg/L	0.6 U				
95-50-1	1,2-DICHLOROBENZENE	30	3	μg/L	0.6 U				
107-06-2	1,2-DICHLOROETHANE	0.17	0.6	μg/L	0.6 U				
78-87-5	1,2-DICHLOROPROPANE	0.44	1	μg/L	0.6 U				
541-73-1	1,3-DICHLOROBENZENE	NL	3	μg/L	0.6 U				
106-46-7	1,4-DICHLOROBENZENE	0.48	3	μg/L	0.6 U				
78-93-3	2-BUTANONE (MEK)	560	50	μg/L	5 U				
591-78-6	2-HEXANONE	3.8	50	μg/L	1 U				
108-10-1	4-METHYL-2-PENTANONE (MIBK)	630	NL	μg/L	0.6 U				
67-64-1	ACETONE	1400	50	μg/L	10 U				
71-43-2	BENZENE	0.46	1	μg/L	0.6 U				
74-97-5	BROMOCHLOROMETHANE	8.3	5	μg/L	0.6 U				
75-27-4	BROMODICHLOROMETHANE	0.13	50	μg/L	0.6 U				

Sample ID PW Location ID PV									
			Locat	tion ID	PW-01	L			
			Sample	e Date	9/12/20	16			
			Sample	e Type	N				
	Т			ſ					
			NYSDEC Standards and	1		ļ			
		RSLs for Tap	Guidance Values for Class	1		l			
CAS No.	Chemical	Water	GA Groundwater (AWQS)	Unit	Result Q				
75-25-2	BROMOFORM	3.3	50	μg/L	0.6 U				
74-83-9	BROMOMETHANE	0.75	5	μg/L	1 U				
75-15-0	CARBON DISULFIDE	81	60	μg/L	0.6 U				
56-23-5	CARBON TETRACHLORIDE	0.46	5	μg/L	0.6 U				
108-90-7	CHLOROBENZENE	7.8	5	μg/L	0.6 U				
75-00-3	CHLOROETHANE	2100	5	μg/L	1 U				
67-66-3	CHLOROFORM	0.22	7	μg/L	0.6 U				
74-87-3	CHLOROMETHANE	19	5	μg/L	0.6 U				
156-59-2	CIS-1,2-DICHLOROETHENE	3.6	5	μg/L	0.6 U				
10061-01-5	CIS-1,3-DICHLOROPROPENE	NL	0.4	μg/L	0.6 U				
110-82-7	CYCLOHEXANE	1300	NL	μg/L	0.6 U				
124-48-1	DIBROMOCHLOROMETHANE	0.87	50	μg/L	0.6 U				
75-71-8	DICHLORODIFLUOROMETHANE	20	5	μg/L	0.6 U				
98-82-8	ISOPROPYLBENZENE	45	5	μg/L	0.6 U				
179601-23-1	M,P-XYLENE	5	5	μg/L	1.2 U				
79-20-9	METHYL ACETATE	2000	NL	μg/L	5.5	_			
1634-04-4	METHYL TERT-BUTYL ETHER	14	10	μg/L	0.6 U				
108-87-2	METHYLCYLOHEXANE	NL	NL	μg/L	0.6 U				
75-09-2	METHYLENE CHLORIDE	11	5	μg/L	0.6 U				
95-47-6	O-XYLENE	5	5	μg/L	0.6 UJ	<u> </u>			
100-42-5	STYRENE	120	5	μg/L	0.6 U				
127-18-4	TETRACHLOROETHENE	4.1	5	μg/L	0.6 U				

Sample ID					PW-0)1-A
Location ID						-01
			Sample	e Date	9/12/	2016
			Sample	е Туре	N	
			NYSDEC Standards and			
		RSLs for Tap	Guidance Values for Class			
CAS No.	Chemical	Water	GA Groundwater (AWQS)	Unit	Result	Q
108-88-3	TOLUENE	110	5	μg/L	0.98	J
156-60-5	TRANS-1,2-DICHLOROETHENE	36	5	μg/L	0.6	U
10061-02-6	TRANS-1,3-DICHLOROPROPENE	NL	0.4	μg/L	0.6	U
79-01-6	TRICHLOROETHENE	0.28	5	μg/L	0.6	U
75-69-4	TRICHLOROFLUOROMETHANE	520	5	μg/L	0.6	U
75-01-4	VINYL CHLORIDE	0.019	2	µg/L	0.6	U

µg/L - microgram per liter

AWQS - Ambient Water Quality Standards

bgs - below ground surface

EPA - Environmental Protection Agency

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

RSLs - regional screen levels

J - estimated result

U - non-detect

UJ - estimated non-detect

Sample ID						A
Location ID					PW-02	L
Sample Date					9/12/1	6
			Sample	е Туре	N	
			Parent Sample	e Code		
			NYSDEC Standards and			
			Guidance Values for Class			
CAS No.	Chemical	EPA RSLs for Tap Water	GA Groundwater (AWQS)	Unit	Result	Q
95-52-4	1,1-BIPHENYL	NL	NL	μg/L	2.1	. UJ
95-94-3	1,2,4,5-TETRACHLOROBENZENE	0.17	5	μg/L	1.1	U
218-01-9	1,2-BENZPHENANTHRACENE	3.4	0.002	μg/L	0.16	U
123-91-1	1,4-DIOXANE	0.46	NL	μg/L	0.21	U
58-90-2	2,3,4,6-TETRACHLOROPHENOL	24	NL	μg/L	2.6	U
95-95-4	2,4,5-TRICHLOROPHENOL	120	NL	μg/L	2.6	U
88-06-2	2,4,6-TRICHLOROPHENOL	1.2	NL	μg/L	1.1	U
120-83-2	2,4-DICHLOROPHENOL	4.6	5	μg/L	2.6	U
105-67-9	2,4-DIMETHYLPHENOL	36	50	μg/L	2.6	U
51-28-5	2,4-DINITROPHENOL	3.9	10	μg/L	11	U
121-14-2	2,4-DINITROTOLUENE	0.24	5	μg/L	1.1	U
606-20-2	2,6-DINITROTOLUENE	0.049	5	μg/L	1.1	U
91-58-7	2-CHLORONAPHTHALENE	75	NL	μg/L	1.1	U
95-57-8	2-CHLOROPHENOL	9.1	NL	μg/L	1.1	U
88-74-4	2-NITROANILINE	19	5	μg/L	1.1	U
88-75-5	2-NITROPHENOL	NL	NL	μg/L	2.6	U
91-94-1	3,3'-DICHLOROBENZIDINE	0.13	5	μg/L	2.6	U
78-59-1	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	78	50	μg/L	1.1	U
99-09-2	3-NITROANILINE	NL	5	μg/L	1.1	U
534-52-1	4,6-DINITRO-2-METHYLPHENOL	0.15	NL	μg/L	1.1	UJ
101-55-3	4-BROMOPHENYL PHENYL ETHER	NL	NL	μg/L	1.1	U

Sample ID						·A
Location ID					PW-01	L
Sample Date					9/12/1	6
			Sample	е Туре	N	
			Parent Sample	e Code		
			NYSDEC Standards and			
			Guidance Values for Class			
CAS No.	Chemical	EPA RSLs for Tap Water	GA Groundwater (AWQS)	Unit	Result	Q
59-50-7	4-CHLORO-3-METHYLPHENOL	140	NL	μg/L	2.6	U
7005-72-3	4-CHLOROPHENYL PHENYL ETHER	NL	NL	μg/L	1.1	U
106-44-5	4-METHYLPHENOL	190	NL	μg/L	5.3	U
100-02-7	4-NITROPHENOL	NL	NL	μg/L	2.6	U
83-32-9	ACENAPHTHENE	53	NL	μg/L	0.16	U
208-96-8	ACENAPHTHYLENE	NL	NL	μg/L	0.16	U
98-86-2	ACETOPHENONE	190	50	μg/L	2.1	UJ
120-12-7	ANTHRACENE	180	7.5	μg/L	0.16	U
1912-24-9	ATRAZINE	0.3	NL	μg/L	2.1	UJ
100-52-7	BENZALDEHYDE	190	0.002	μg/L	2.1	UJ
56-55-3	BENZO(A)ANTHRACENE	0.012	NL	μg/L	0.16	U
50-32-8	BENZO(A)PYRENE	0.0034	0.002	μg/L	0.16	U
205-99-2	BENZO(B)FLUORANTHENE	0.034	NL	μg/L	0.16	U
191-24-2	BENZO(G,H,I)PERYLENE	NL	0.002	μg/L	0.16	U
207-08-9	BENZO(K)FLUORANTHENE	0.34	50	μg/L	0.16	U
85-68-7	BENZYL BUTYL PHTHALATE	16	5	μg/L	2.6	U
111-91-1	BIS(2-CHLOROETHOXY)METHANE	5.9	1	μg/L	2.6	U
111-44-4	BIS(2-CHLOROETHYL) ETHER	0.014	5	μg/L	2.6	U
117-81-7	BIS(2-ETHYLHEXYL)PHTHALATE	5.6	5	µg/L	1.1	U
108-60-1	BIS-CHLOROISOPROPYL ETHER	71	NL	μg/L	2.6	U
105-60-2	CAPROLACTAM	990	NL	μg/L	2.1	UJ

Sample ID						A
Location ID					PW-01	L
Sample Date					9/12/1	6
			Sample	е Туре	N	
			Parent Sample	e Code		
			NYSDEC Standards and			
			Guidance Values for Class			
CAS No.	Chemical	EPA RSLs for Tap Water	GA Groundwater (AWQS)	Unit	Result	Q
86-74-8	CARBAZOLE	NL	NL	μg/L	1.1	U
53-70-3	DIBENZO(A,H)ANTHRACENE	0.0034	NL	μg/L	0.16	U
132-64-9	DIBENZOFURAN	0.79	50	μg/L	1.1	U
84-66-2	DIETHYL PHTHALATE	1500	50	μg/L	1.1	U
131-11-3	DIMETHYL PHTHALATE	NL	50	μg/L	1.1	U
84-74-2	DI-N-BUTYLPHTHALATE	90	50	μg/L	1.1	U
117-84-0	DI-N-OCTYLPHTHALATE	20	50	μg/L	2.6	U
206-44-0	FLUORANTHENE	80	50	μg/L	0.16	U
86-73-7	FLUORENE	29	0.5	μg/L	0.16	U
87-68-3	HEXACHLORO-1,3-BUTADIENE	0.14	0.04	μg/L	1.1	U
118-74-1	HEXACHLOROBENZENE	0.0098	5	μg/L	1.1	U
77-47-4	HEXACHLOROCYCLOPENTADIENE	0.041	5	μg/L	1.1	UJ
67-72-1	HEXACHLOROETHANE	0.33	0.002	μg/L	1.1	U
193-39-5	INDENO(1,2,3-CD)PYRENE	0.034	NL	μg/L	0.16	U
91-20-3	NAPHTHALENE	0.17	NL	µg/L	0.16	U
98-95-3	NITROBENZENE	0.14	0.4	μg/L	2.6	U
621-64-7	N-NITROSO-DI-N-PROPYLAMINE	0.011	NL	μg/L	2.6	U
86-30-6	N-NITROSODIPHENYLAMINE	12	50	μg/L	1.1	U
106-47-8	P-CHLOROANILINE	0.37	5	μg/L	1.1	U
87-86-5	PENTACHLOROPHENOL	0.041	2	μg/L	1.1	U
108-95-2	PHENOL	580	2	μg/L	1.1	U

8						
Sample ID					PW-01	L-A
Location ID					PW-0)1
Sample Date					9/12/2	16
Sample Type					N	
			Parent Sample	e Code		
			NYSDEC Standards and			
			Guidance Values for Class			
CAS No.	Chemical	EPA RSLs for Tap Water	GA Groundwater (AWQS)	Unit	Result	Q
100-01-6	P-NITROANILINE	3.8	5	μg/L	2.	6 U
129-00-0	PYRENE	12	50	μg/L	0.1	6 U

µg/L - microgram per liter

AWQS - Ambient Water Quality Standards

bgs - below ground surface

EPA - Environmental Protection Agency

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

RSLs - regional screen levels

U - non-detect

UJ - estimated non-detect
Table 4-3cPotable Water Sample Detections – Metals77 Westchester Avenue, Pound Ridge/Scotts Corners Site

			Sam	ple ID	PW-01-	A
			Locat	tion ID	PW-01	
			Sample	e Date	9/12/20	16
			Sample	е Туре	Ν	
			NYSDEC Standards and			
			Guidance Values for			
		FPA RSIs for	Class GA Groundwater			
CAS No.	Chemical	Tap Water	(AWQS)	Unit	Result	Q
7429-90-5	ALUMINUM	2000	NL	µg/L	3.5	J
7440-36-0	ANTIMONY	0.78	3	μg/L	2.4	J
7440-38-2	ARSENIC	0.052	25	μg/L	2	U
7440-39-3	BARIUM	380	1000	μg/L	17	J
7440-41-7	BERYLLIUM	2.5	3	µg/L	1	U
7440-43-9	CADMIUM	NL	5	µg/L	1	U
7440-70-2	CALCIUM METAL	NL	NL	µg/L	24000	
7440-47-3	CHROMIUM	NL	50	μg/L	1	U
7440-48-4	COBALT	0.6	NL	µg/L	0.39	J
7440-50-8	COPPER	80	200	μg/L	65	
7439-89-6	IRON	1400	300	µg/L	170	J
7439-92-1	LEAD	15	25	µg/L	0.85	J
7439-95-4	MAGNESIUM	NL	35000	µg/L	9400	
7439-96-5	MANGANESE	NL	300	µg/L	15	
7440-02-0	NICKEL	39	100	µg/L	6.1	J
7440-09-7	POTASSIUM	NL	NL	µg/L	2400	
7782-49-2	SELENIUM	10	10	µg/L	5	U
7440-22-4	SILVER	9.4	50	µg/L	1.3	J
7440-23-5	SODIUM	NL	20000	μg/L	67000	
7440-28-0	THALLIUM	0.02	0.5	µg/L	1	U
7440-62-2	VANADIUM	8.6	NL	µg/L	1.1	J
7440-66-6	ZINC	600	2000	μg/L	170	

Bolded - detection

exceeds NYSDEC AWQS exceeds EPA RSL

 $\mu g/L$ - microgram per liter

AWQS - Ambient Water Quality Standards

bgs - below ground surface

EPA - Environmental Protection Agency

ID - identification

N - normal

No. - number

NL - not listed

NYSDEC - New York State Department of Environmental Conservation

Q - qualifier

RSLs - regional screening levels

J - estimated result

U - non-detect

Table 4-4 Air Sample Detections - VOCs 77 Westchester Avenue, Pound Ridge/Scotts Corners Site

			Sa	ample ID	AO-0	1-A	SV-0	1-A	SV-0	2-A	SV-9	02-A
			Loo	ation ID	AO-	01	SV-0	01	SV-	02	SV	-02
			Sam	ple Date	9/12/	2016	9/12/2	2016	9/12/	2016	9/12,	/2016
			Sam	ple Type	N		N		N		F	D
			Parent Sam	ole Code		1				1	SV-0)2-A
CAS No.	Chemical	EPA VISL	NYSDOH AGVs	Unit	Result	Q	Result	Q	Result	Q	Result	Q
71-55-6	1,1,1-TRICHLOROETHANE	173809.5	NL	µg/m³	6.5	IJ	6	UJ	6	UJ	7.6	UJ
79-34-5	1,1,2,2-TETRACHLOROETHANE	1.6	NL	µg/m³	8.2	IJ	7.6	UJ	7.6	UJ	9.6	UJ
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	1042857.1	NL	µg/m³	9.2	IJ	8.4	UJ	8.4	UJ	11	UJ
79-00-5	1,1,2-TRICHLOROETHANE	5.8	NL	µg/m³	6.5	IJ	6	UJ	6	UJ	7.6	UJ
75-34-3	1,1-DICHLOROETHANE	58.5	NL	µg/m³	4.9	IJ	4.5	UJ	4.5	UJ	5.7	UJ
75-35-4	1,1-DICHLOROETHENE	6952.4	NL	µg/m³	4.8	IJ	4.4	UJ	4.4	UJ	5.6	UJ
120-82-1	1,2,4-TRICHLOROBENZENE	69.5	NL	µg/m³	8.9	IJ	8.2	UJ	8.2	UJ	10	UJ
95-63-6	1,2,4-TRIMETHYLBENZENE	NL	NL	µg/m³	5.9	IJ	5.4	IJ	5.4	UJ	6.9	UJ
106-93-4	1,2-DIBROMOETHANE	0.2	NL	µg/m³	9.2	IJ	8.5	UJ	8.5	UJ	11	UJ
95-50-1	1,2-DICHLOROBENZENE	6952.4	NL	µg/m³	7.2	IJ	6.6	UJ	6.6	UJ	8.4	UJ
107-06-2	1,2-DICHLOROETHANE	3.6	NL	µg/m³	4.9	IJ	4.5	UJ	4.5	UJ	5.7	UJ
78-87-5	1,2-DICHLOROPROPANE	9.4	NL	µg/m³	5.5	IJ	5.1	UJ	5.1	UJ	6.5	UJ
76-14-2	1,2-DICHLOROTETRAFLUOROETHANE;FLUOROCARBON 114	NL	NL	µg/m³	8.4	IJ	7.7	UJ	7.7	UJ	9.8	UJ
108-67-8	1,3,5-TRIMETHYLBENZENE	NL	NL	µg/m³	5.9	IJ	5.4	UJ	5.4	UJ	6.9	UJ
541-73-1	1,3-DICHLOROBENZENE	NL	NL	µg/m³	7.2	IJ	6.6	IJ	6.6	UJ	8.4	UJ
106-46-7	1,4-DICHLOROBENZENE	8.5	NL	µg/m³	7.2	IJ	6.6	UJ	6.6	UJ	8.4	UJ
123-91-1	1,4-DIOXANE	NL	NL	µg/m³	4.3	IJ	4	UJ	4	UJ	5	UJ
78-93-3	2-BUTANONE (MEK)	173809.5	NL	µg/m³	3.5	IJ	7.7	l	4.8	l	4.1	UJ
591-78-6	2-HEXANONE	1042.9	NL	µg/m³	4.9	IJ	4.5	UJ	4.5	UJ	5.7	UJ
622-96-8	4-ETHYLTOLUENE	NL	NL	µg/m³	5.9	IJ	5.4	UJ	5.4	UJ	6.9	UJ
108-10-1	4-METHYL-2-PENTANONE (MIBK)	104285.7	NL	µg/m³	4.9	IJ	4.5	UJ	4.5	UJ	5.7	UJ
67-64-1	ACETONE	1077619.0	NL	μg/m ³	15	l	110	l	41	l	35	1

Table 4-4 Air Sample Detections - VOCs 77 Westchester Avenue, Pound Ridge/Scotts Corners Site

			Sa	ample ID	AO-0	1-A	SV-0	1-A	SV-0	2-A	SV-9	02-A
			Loo	cation ID	AO-	01	SV-0	01	SV-	02	SV	-02
			Sam	ple Date	9/12/	2016	9/12/2	2016	9/12/2	2016	9/12,	/2016
			Sam	ple Type	N		N		N		F	D
			Parent Sam	ple Code							SV-0)2-A
CAS No.	Chemical	EPA VISL	NYSDOH AGVs	Unit	Result	Q	Result	Q	Result	Q	Result	Q
107-05-1	ALLYL CHLORIDE	NL	NL	µg/m³	3.8	IJ	3.4	UJ	3.4	UJ	4.4	UJ
71-43-2	BENZENE	12.0	NL	µg/m³	3.8	IJ	3.5	UJ	3.5	UJ	4.5	UJ
100-44-7	BENZYL CHLORIDE	NL	NL	µg/m³	6.2	IJ	5.7	UJ	5.7	UJ	7.2	UJ
75-27-4	BROMODICHLOROMETHANE	2.5	NL	µg/m³	8	IJ	7.4	UJ	7.4	UJ	9.4	IJ
75-25-2	BROMOFORM	85.1	NL	µg/m³	12	IJ	11	UJ	11	UJ	14	UJ
74-83-9	BROMOMETHANE	173.8	NL	µg/m³	4.7	IJ	4.3	IJ	4.3	UJ	5.4	IJ
75-15-0	CARBON DISULFIDE	24333.3	NL	µg/m³	3.7	IJ	25	J	86	l	85	J
56-23-5	CARBON TETRACHLORIDE	15.6	NL	µg/m³	7.5	IJ	6.9	IJ	6.9	UJ	8.8	UJ
108-90-7	CHLOROBENZENE	1738.1	NL	µg/m³	5.5	IJ	5.1	UJ	5.1	UJ	6.4	UJ
75-00-3	CHLOROETHANE	347619.0	NL	µg/m³	3.2	IJ	2.9	UJ	2.9	UJ	3.7	UJ
67-66-3	CHLOROFORM	4.1	NL	µg/m³	5.9	IJ	5.3	J	9.3	l	9.3	J
74-87-3	CHLOROMETHANE	3128.6	NL	µg/m³	2.5	IJ	2.3	UJ	2.3	UJ	2.9	UJ
156-59-2	CIS-1,2-DICHLOROETHENE	NL	NL	µg/m³	4.8	IJ	4.4	UJ	4.4	UJ	5.6	UJ
10061-01-5	CIS-1,3-DICHLOROPROPENE	23.4	NL	µg/m³	5.4	IJ	5	IJ	5	UJ	6.4	UJ
124-48-1	DIBROMOCHLOROMETHANE	NL	NL	µg/m³	10	IJ	9.4	UJ	9.4	UJ	12	UJ
75-71-8	DICHLORODIFLUOROMETHANE	3476.2	NL	µg/m³	5.9	IJ	5.4	UJ	5.4	UJ	6.9	UJ
100-41-4	ETHYLBENZENE	37.4	NL	µg/m³	5.2	IJ	4.8	UJ	4.8	UJ	6.1	IJ
87-68-3	HEXACHLORO-1,3-BUTADIENE	NL	NL	µg/m³	13	IJ	12	UJ	12	UJ	15	UJ
108-38-3	M,P-XYLENE	NL	NL	μg/m³	5.2	IJ	6.4	l	4.8	UJ	6.1	IJ
1634-04-4	METHYL TERT-BUTYL ETHER	360.0	NL	µg/m³	4.3	IJ	4	UJ	4	UJ	5	IJ
75-09-2	METHYLENE CHLORIDE	3379.6	60	µg/m ³	4.2	IJ	3.8	UJ	3.8	UJ	4.9	UJ
91-20-3	NAPHTHALENE	NL	NL	µg/m ³	6.3	IJ	5.8	UJ	5.8	UJ	7.3	UJ

Table 4-4Air Sample Detections - VOCs77 Westchester Avenue, Pound Ridge/Scotts Corners Site

			Sa	ample ID	AO-0	1-A	SV-0	1-A	SV-0	2-A	SV-9	02-A
			Loo	cation ID	AO-	01	SV-0	01	SV-	02	SV	-02
			Sam	ple Date	9/12/	2016	9/12/2	2016	9/12/	2016	9/12	/2016
			Sam	ple Type	N		N		N	l	F	D
		1	Parent Sam	ole Code							SV-	02-A
CAS No.	Chemical	EPA VISL	NYSDOH AGVs	Unit	Result	Q	Result	Q	Result	Q	Result	Q
142-82-5	N-HEPTANE	NL	NL	µg/m³	4.9	IJ	4.5	UJ	4.5	IJ	5.7	IJ
95-47-6	O-XYLENE	NL	NL	µg/m³	5.2	IJ	4.8	IJ	4.8	IJ	6.1	UJ
100-42-5	STYRENE	34761.9	NL	µg/m³	5.1	IJ	4.7	IJ	4.7	IJ	6	UJ
127-18-4	TETRACHLOROETHENE	360.0	30	µg/m³	8.1	IJ	64	J	67	l	66	1
108-88-3	TOLUENE	173809.5	NL	µg/m³	4.5	IJ	50	l	8	l	6.5	1
156-60-5	TRANS-1,2-DICHLOROETHENE	NL	NL	µg/m³	4.8	IJ	4.4	IJ	4.4	IJ	5.6	UJ
10061-02-6	TRANS-1,3-DICHLOROPROPENE	23.4	NL	µg/m³	5.4	IJ	5	UJ	5	IJ	6.4	IJ
79-01-6	TRICHLOROETHENE	15.9	2	µg/m³	6.4	IJ	5.9	UJ	5.9	IJ	7.5	IJ
75-69-4	TRICHLOROFLUOROMETHANE	NL	NL	µg/m³	6.8	IJ	6.2	IJ	6.2	IJ	7.9	UJ
108-05-4	VINYL ACETATE	NL	NL	µg/m³	42	IJ	39	IJ	39	IJ	49	UJ
75-01-4	VINYL CHLORIDE	5.6	NL	µg/m³	3.1	IJ	2.8	IJ	2.8	IJ	3.6	IJ

Bolded - detection

exceeds NYSDOH AGV μg/m³ - microgram per cubic meter AGVs - air guideline values EPA - Environmental Protection Agency VISL - vapor intrusion screening levels FD - field duplicate ID - identification J - estimated result N - normal NL - not listed No.- number NYSDOH - New York State Department of Health UJ - estimated undetected Q - qualifier

Figures

Appendix A

Appendix A

Geophysical Investigation Report

GEOPHYSICAL INVESTIGATION REPORT

SITE LOCATION:

75 Westchester Avenue Pound Ridge, New York

PREPARED FOR:

CDM Smith 14 Wall Street, Suite 1702 New York, New York

PREPARED BY:

Mike Mesaros Delta Geophysics Inc. 738 Front Street Catasauqua, PA 18032

August 22, 2016

Delta Geophysics, Inc. (Delta) is pleased to provide the results of the geophysical survey conducted at 75 Westchester Avenue, Pound Ridge, New York.

1.0 INTRODUCTION

On August 16th, 2016 Delta Geophysics personnel performed a limited geophysical investigation at 75 Westchester Avenue, Pound Ridge, New York.. The area of interest was all accessible areas throughout the property. Particular attention was given to the location of the client proposed soil borings. Soil borings were located inside the building and throughout the property. Subsurface conditions were unknown at the time of survey.

2.0 SCOPE OF WORK

The survey was conducted to investigate the subsurface for anomalies consistent with underground storage tanks (UST) and former excavations. A secondary objective was to locate and mark detectable underground utilities for the property.

3.0 METHODOLOGY

Selection of survey equipment is dependent site conditions and project objectives. For this project the technician utilized the following equipment to survey the area of concern:

- Geophysical Survey Systems Inc. SIR-3000 cart-mounted Ground Penetrating Radar (GPR) unit with a 400 Mhz antenna.
- Radiodetection RD7000 precision utility locator.
- Fisher M-Scope TW-6 pipe and cable locator.

Ground penetrating radar (commonly called GPR) is a geophysical method that has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 1,000 MHz) to acquire subsurface information. Energy is propagated downward into the ground and is reflected back to the surface from boundaries at which there are electrical property contrasts. GPR is a method that is commonly used for environmental, engineering, archeological, and other shallow investigations.

The GSSI SIR-3000 GPR can accept a wide variety of antennas which provide various depths of penetration and levels of resolution. The 400 MHz antenna can achieve depths of penetration up to about 20 feet, but this depth may be greatly reduced due to site-specific conditions. Signal penetration decreases with increased soil conductivity. Conductive materials attenuate or absorb the GPR signal. As depth increases the return signal becomes weaker. Penetration is the greatest in unsaturated sands and fine gravels. Clayey, highly saline or saturated soils, areas covered by steel reinforced concrete, foundry slag, of other highly conductive materials significantly reduces GPR depth of penetration.

The GPR was configured to transmit to a depth of approximately 10 feet below the subsurface, but actual signal penetration was limited to approximately 3-4 feet below ground surface (bgs). The limiting factor was signal attenuation from near surface soils and snowcover.

The RD7000 precision utility locator uses radio emission to trace the location of metal bearing utilities. This radio emission can be active or passive. Active tracing requires the attachment of a radio transmitter to the utility, passive tracing uses radio emissions that are present on the utility. Underground electrical utilities typically emit radio signals that this device can detect.

The TW-6 is designed to find pipes, cables and other metallic objects such as underground storage tanks. One surveyor can carry both the transmitter and receiver together, making it ideally suited for exploration type searches of ferrous metal masses. Metal detectors of this type operate by generating a magnetic field at the transmitter which causes metallic objects in the subsurface to generate a secondary magnetic field. The induced secondary field is detected by the receiver, which generates an audible tone equal to the strength of the secondary field.

4.0 SURVEY FINDINGS

All accessible areas throughout the property were examined during this investigation. Each location was examined with the RD7000 for potential subsurface utilities then surveyed with GPR and TW-6 for other potential anomalies. Based on the data gathered, three GPR anomalies and two metallic anomalies were detected on the subject property.

Metallic Anomaly #1

Metallic Anomaly #1 was located with TW-6 and confirmed with GPR. The anomaly measures approximately 5 feet by 4.5 feet. It is located approximately 50 feet from the access road behind the building and 5.5 feet from the west wall of the building. GPR imaged a flat feature at 1 foot bgs.

Metallic Anomaly #2

Metallic Anomaly #2 was located with TW-6 and confirmed with GPR. The anomaly measures approximately 4 feet by 4 feet. It is located approximately 25 feet from the access road behind the building and 6 feet from the west wall of the building. GPR imaged a flat feature at less than 1 foot bgs.

Due to the shallow depth of the anomaly, Delta and CDM personnel dug down to find two steel plates covering a brick lined pit. The pit was approximately 3 feet deep with a diameter of 3 feet.

Anomaly #1

Anomaly #1 was located with GPR. The anomaly measures approximately 27 feet by 23 feet. It is located in the parking lot approximately 22 feet north of Westchester Avenue and 6 feet east of the former pump island. GPR transects imaged disturbed soils consistent with a former excavation.

Anomaly #2

Anomaly #2 was located with GPR. The anomaly measures approximately 20 feet by 12 feet. It is located in the parking lot approximately 61 feet north of Westchester Avenue and 12 feet east of the building. GPR transects imaged disturbed soils consistent with a former excavation.

Anomaly #3

Anomaly #3 was located with GPR. The anomaly measures approximately 8 feet by 5 feet. It is located in the northeast addition to the building. GPR transects imaged disturbed soils consistent with a former excavation.

Underground lifts / floor drains

Two anomalous areas were detected with GPR in the garage in the southwest section of the building. GPR transects imaged two areas of disturbed soils with dimensions of approximately 1 foot by 1 foot. TW-6 usage was limited throughout the garage due to reinforced concrete. No unknown pipes were detected that may have been associated with the soil disturbances. The soil disturbances may be former underground lifts.

A former floor drain filled with concrete is located in the northern garage of the building. Delta imaged an unknown utility traverse from the floor drain to an area outside identified by CDM personnel to be a former drywell. Approximate dimensions of the former drywell are 6.5 feet by 4 feet. It is located in the parking lot approximately 22 feet east of the building and 11 feet south of the access road behind the building.

Utility Survey

Delta performed a utility survey across the client specified area. The following utilities were identified: electrical conduits, telecommunications, water, and sanitary sewer. All utilities were marked onsite with appropriate colors. Anomalous features were marked onsite in pink paint. Former excavations were marked onsite in white paint.

A site map (081616) is included with all located subsurface features.

5.0 SURVEY LIMITATIONS

GPR depth of penetration was limited to approximately 3-4 feet bgs. The limiting factor was due to conductive soils. Interior GPR depth of penetration was limited to less than 1 foot bgs due to reinforced concrete. TW-6 usage was limited throughout the interior of the building due to reinforced concrete. Vehicles were parked along the west and east sides of the parking lot. Parked vehicles prevent Delta personnel from being able to survey the area for potential anomalous features.

6.0 WARRANTIES AND DISCLAIMER

As with any geophysical method, it must be stressed that caution be used during any excavation or intrusive testing in proximity to any anomalies indicated in this report. In addition, the absence of detected signatures does not preclude the possibility that targets may exist. To the extent the client desires more definitive conclusions than are warranted by the currently available facts; it is specifically Delta's intent that the conclusions stated herein will be intended as guidance.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based on the facts currently available within the limit or scope of work, budget and schedule. Delta represents that the services were performed in a manner consistent with currently accepted professional practices employed by geophysical/geological consultants under similar

circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise.

This report was prepared pursuant to the contract Delta has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Delta and its client and serves as the basis upon which this report was prepared. Because of the importance of the understandings between Delta and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Delta.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Delta's contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

L

NOTES:

DATE 8/16/16 SCALE 1'' = 16' DWG NO. 081816 SHT NO. 1 OF 1

PROJECT.

This site plan was produced from data positioned b this document is not intended or represented to be

As with any geophysical method, it must be stresse in this document The absence of detected signature this site plan are based upon the application of sci Professional judgements expressed herein are based

Reliance or use by any such third party without exp contract with the client. Any such unauthorized relia risk. For the same reasons, no warranties or repres

Appendix B

Appendix B

Field Logbook

77 Westchester Ave, Pound Ridge, NY 6/1/16 TBAGG- Pound Ridge Site Reconnaissance Personel - CDM Smith - Trans Tomaselli, Joe Button - Town of Pound Ridge - Dick Lymon PPE - Level D Weather - Sunny, 75°F Purpose - Site Reconnaissonce for Phare I investigation 0900-T. Tomoselli ansite 0945- J. Butan 1000 - Dick Lynna Notes - Diagonal Cut from trantment system most litely - Topography is south adjuest need to confirm grand water flow directa - Supply well located on south west corner of building, tres in to utility room in back room where there is a sump pup ad pressure tasks (no filter) than goes off to smit in each business - Located MW-1, MW-2, MW-3, MW-4, BR-2 Will have to check and see if they are sample able - Former Dry well Located, as well as floor drams all of which are only present as cement patches now - Abardoned UST (inplace) in empty garage has large L-shoped patch - Lots of Gumlk bees present in back on building

77 West chester Ave, Pound Ridge, NY 6/2/16 - West side of building (10-15 feet) accessible no over head thos septir confined at Guilt (north east corner) 1230 - Allpersonnel offsite 16

Location Pound Ridge, NY Date 8/16/16 Project/Client TBAGG - Pound Ridge / USEPA Personnel - CDM Smith - T. Tomaselli Delta - Mike Mesaros P.P.E- LevelD weather- Sunny, 85°F Purpose - Geophysical Survey, chear drilling locations 0830-T. Tomoselli onsite Delta onsite 0900 - site walk and health and safety meeting begin survey. 0920- Collect water level, see status of Mw-2. Depth to water = 9.99 feet 6tic no product, slight petrolem odor Depth to 60 than (hard) = 11.00 ff 6tic Hinch well, plug, cashy intact 0945- Collect nater level, see status of MW- ! Depth to mater = 9.85 Feet Stic no product, slight petroleum odor Depth to Gottom = 17.82 feet 6 to c Soft 60 Hom - plug, cash in tact, cash has 100gh edge on top. Entere cashy is slotted. Unich we 1000- Measur access to Pound Ridge IT 8/16/16

Location Ridge M Date 8/16/26 5 Project / Client TBA 66- Pound Ridge (USEPA

Auto body. Gamage door is Steet Ginches high chilling is 12 feet high. 1020- Measure access to rear shed, bay door is 8 feet high, ceiling is 10 feet 8 indus. 1030- Measure access to Town and Country Auto Repair, Espy door is 9 feet Smoke high, ceiling is 12 feet hah. 1100-Delta locules MW-A, correct on map. Collect maker level, See's tatus of well Depth to unler = 8.85 feet stic reproduct slight petroleum odor Depth to bottom = 13.40, soft 60 Hm 4: nch PVC casing plug intact, casing had MW-A is located Theet eastancy from building) of MW-1 1130 - Locution in Eack Shed is cleared by tneeds to stay off the cancele patch and a way from French going to wall show in picture Best to drill nest of trench under out let on hall 1200-Delta clears inside Pond Allage

Location Pand Aulae, NY Date \$ 9/7/16 Project / Client Pand Ridge -TB+66 -USEPA Location Pan Ridge NY Date 8/11/16 Project / Client Pound Ridge -TBAGG - USEPA Personal - T. Toreselly Y. Lin, C. Jaconsk, R. McFer Acto Boly bay. Pipma From dry well forms PTE-Lar(D) Straight line to former drain, May heather - Cloudy 80°F Purpose - Begin Soil Sing by phase II 0740- T. Torsell onsite Talon Onsite Still be safest. 1300 - Delta identifies a 3 foot deep 3 foot drameter, plastic pipe lined bole with steel over near back 0815- Y. Liu ansite 0830- Conduct Hts meeting, walkow Bothwest comer. - Delta Identified that potably well pipmy leads to "simp" in utility Noom, then up to 80 gallon presson 0900 - Tula bears Arilly at SB-01-04DO- Collect ISB-OI-A CLP BD3DD 0-2 feet 6gg For VOCS SUNCS TPH PCBS /Ketals CMS/MSD tant 1400 - After scanning Town and Country Acto Back note 9:15 Kit refusal at 3 tert moved off location vest Sattempts ended at location just off surb. 0940-Refusal at 13 feet 6g. Repair, Delta sees no lines (oung 3 fof concrete patches Most likely former hydraulic lifts, Also diagonal entrounlizo in back area. Sere figure. 1420 - M. Mesores completes survey attsite all drilling peatrons cleared. 1000-Collect BB-01-B CLP BD3D1 6-8-12 FeetEgs Forvocs SVPCs TPH PCBS Metals 1015-Jalon sets up at GW-02 1430 T. Torosell offisile-ast owner about height of rig prevents then from domy this pent will try to me pourt pit in north west corner, says it is a Former dram for masher ('clothest 7 8/16/16 1030-Table Sets up begins drilling Rite in the Rain

Location Pand Ridge, NY Date 917/16 Project/Client Pome Ridge, TBA66-USEPA Location Pand Ridge, NY Date 9/7/16 Project/Client Pand Ridge, TBA 66-USEDA at 5B-03. 400 - Reach deiling at SB-09 1420-ISB-09-A sample that collected CLP=BD3ES for VOCS TPH 0-2 failed 1430-Talor conflicted SB-69, installed 1040-15B-03-A suple the, CLP BD3D2 Collected 0-2 feetbys, for VOCS SVOCE, PEBS, TPH, Metals 1045 STOP work due to lab issue No CLP Laboration Take, Take temporary well 1440-15B-09-BI sample time collecte 8-10 Fect 6gs BD3E6 CLP Ar, VOCS, TPH unch 1220- Cartinue de llug at SB-03 1230- Complete SB-03 to 15 feetbar 1235-[SB-03-B] simple collected, BDBD3CLP 1445- Talon Begins drilling at SB-08. 1500 - Encomtes Africal at 5 feet 5-7 Feetbas for VOCS SVOCS PCBS TPH Metals Sixtmes, allorand corner of portun let best run to 7 Pet 1 Eggs 1530 FSB-08-Al Sample two; CLP BDBE3 1240- Backfill 5B-03 me to 5B-04, begin drilling effected Q 2 feet by 5 for VOCS TPH 1255-15B-04-A suple collected CLP 15:40-5B-08-B 5apk +4 CLP BD3E# BD3D4, For VOCS SVOCS PCBS collected 5-7feet 6g 5 for VCCS TANY BD3D9, for Vols SVols PCBs TPH Metals 0-2 feetos B20-Talon begins installing SU-01,02. 1340-ISB-04-BJ S-ple Collected, CLP= BD3DS, for VOCs, SVOCs, PCBs TPH Metals 9-11 feetbgs TPH Metals SB-0 #97/16 SV-01 und SU02 installed at 7 feet bgs Sund 6-7 feetbgs Bentonik 0-6 feetbgs T9/7/16: 1550- Talu begins drilling at SB-10-1605- Talu Completes SB-10 to 12.5 pert 1630-15B-10-Alsopletme, CLP BD3E7 collected 0-2 feet 6gs, for VOCs 1645-ISB-10-BI sample time CLP BD3ES Collected 8-10 Feel Gas for VOCSTPH TT 9/7/16 Roman Roman

Location Paul Ridge, NY Date 9/9/16 Project / Client Paul Ridge, TBA66-USEPA Location Pound Ridge, NY Date 9/8/16 Project / Client Paul Bilge, TBA66-USEPA Personnel-CDM Sinvig-T. Tomsell, Y. Liv Taton (. Jacorsti, R. M. Fee Note-Pound Ridge Auto Gody Lasbeen puntry this offernoon. Notra PID has been K 1.0 PPM and up had conducted sapling away from / up und from exhauss vert PPE - Level D weather - Durcast, 85°F Purpose - Coplete Soil soplung begin Grand water Sampling D715- CDM Smith Jalon Casile 1635 - Backnote - a Lonan droje by god asked what we are doing, didnot 0730-Calibrate PID, H+Smeeting Seen bothered, told her we are Backnote- Dick Lyman ons. & B. Jefly sapping soil and water for the town. She took a photo 1650 - No saples shipped today labis Gery processed to check in - 9/7/16 - 12:00 Back note to 1650 - 4/7/10 mole, Subcontract 1 ab vos still being procured lost night work was stopped earlier inday since 1700- Allpersauell offs. A. there was notable at ofter spratting with V, Marian and B. Marpora M T. Torreselli was given goaheed 而加 to curtinue sampling soil. 07 45 Talon sets Cp on SB-06, beging drilling 0820-Tz on reaches 15 feet logs, Needs to collect additional plume for puplicate 0825-15B-06-Al Say & collected CLPBD3DS-for VOCS

Location Pand Ridge, NY Date 1/9/16 Project/Client Pound Ridge TBA66 VSEPA Location Pond Ridge, NY Date 9/8/16 13 Project / Client Pond Ridge, TAA66 USEPA after installing tenpory well to 12 Feetbys at SB ps, 1050 - Talon Mits refusal 1 foct in to dry well at SB - OT, will cellect JPH, SVOCS, PCBs, Metals, 0-2feet 695 0845- Spoke to B. Mcc Dinald. T. OK to me GW-2 to SB-4 9/8/16 5B-07-A from hore more off location 0855 Talon begins compa at 50,01, 38-05 1 9/8/16 T to collect SB-07-B From just 2 feet down, gradient of SB-07-A 1110- Captete drilling at SB-07 more to SB-11 0900 Collect ISB-060rd depliab-TSB-906-BI BD309 my BD3ED 1120-15B-07-A CLP BD3E1 sdlell From 0.0-0.0 feet by soft bottom of dry well PID=1.5 ppm dry gray brown s. It, some sond PCBS TPH, Metals 7-9 Feet bgs. 0920-Complete Com at SB-05/8/67 Some grap Also some composed blue grap material, mybe soupor yincles thick, bean advancing 2- Foot run 5. 0930 - Notice 58-04 and 58-05 were bused 145- Isla 0955-58-05-A superior D955-58-05-A superior For VOCS SVOCS, PCBS, TPH Metals 0-4-feet 6g. Legns drilling at SB-11 1155 SB-07-BCLP-BD3EZ Lottected From 9-11 feetbus For VOCS, SVOCS, PCB, TPH, Metals 1030-[SB-05-B] sample time CLPBD3D7 For VOCS SVOCS PCBS, TPH, Metals 5.5-9.5 feetbas 1040- Talar relocutes to SB-07 7.9/8/16 1210-Talor sets Bu-11 well after Cupleting Gung to refusal at 13 1230-15B-11-A 5mp he time 7 9/3/16 Rete in the Rain

14 Location Pand Ridge NY Date 9/8/16 Project / Client Pand Ridge TBAGG, USEPA Location Down Ridge, NY Date 9/4/16 Project / Client Poind Ridge, TBA66 USEPA Cent. (LP=BD3E9, 0-2 Feelbys for VOCs, SUX, TPH, Matals PCB 1245-ICollect SB-11-B 8-10 footbys CLP=BD3FO for VOCs, SUDCs, TPH, metals, PCBs Personnel - COMSelfh - T. Tomaselli, K. Liv Talon - C. Daubrski, R. Mc Fee PE - Level D Weather - Cloudy 85°F Europe - Complete grandwater Spling OTIS- CDMSnoth on site still have not received dir earists at 13:15- taton 6.4F3.Ap TANG Tob Kotel 1400 - T. Bennet not Froy 1. Toursells to 0730 - Y. Liv calibrates YSI, PID, Labotte ship suples to RT/ (ub. 1430 - Pack all sayks from today and yestoold send to RTI 1830 - All personnel offste to FedEX 0850-Set up at GU-01 pegin pinging uill forge initial development due to lock of with 0900-Gu-01 ran dry panping Du/ mmule. Stop, while to recharge 0930-Begin purging at 64-05, ran dry in lominutes 0940-Spoke to B. Mue Jonald, V. Mar Elen and one up with new plan Collect VOCS, FRO from temporory. wells due to lack of volime "tothert Full suite + dupliaire at GW-06 CMW-1) cullect hs/hs0 full suite at GW-10 (MW-2). D950-will Collect Artu-Gw-OL 05 919/16

Location Paul Ridge NT Date 9/9/16 Project/Client Paul Pidge, TBA66 USEPA Location Pound Ridge, NY Date 9/12/16 Project / Client Pound Ridge, MAGG USER 1055 - Begin Purging at MW-1. 1145 - MW-1-Al supleting (Mrs/Misp) tor VOCS SVOCS PCBs Metals TPH Personnel-CDM SmAM-T. Tomselli, C. Hunh 1 allan PPE Jeither - Sunne, 75°F 1145. Thu-91-A) supleite for VOCS SVOCY, PCBS Metals TPIE, Deplicate, Purpose - Complete grandwater und air Smalling 0730- COMISMA ONSIL CONDUCT 1220 RB-OI collected off soil sampling liner, for VOCS SVOCS, PEBS, TPH HIS Metria 0748-Calibrate VSL. DD Latrotte 0 800- Tripplink TB-021 siple the meto 15 Backhote FTB-01/ collected at 08:00 0830 - Lun He will not furn dr. Becknok- Talon Teff STA 1100. Did buttery OK. 0945-Set por Gw-11 well quickly division withor recharge to collect grab sample 1000-G-W-11-A support collected for nother anything else to do to day 1300 - Collect RB-02 of thema for groundinger ringate 6 lant for VOCA SUCCE POBS Metals, TPH. VOCS TPH-GRO only die 400- (OW-01-A) sample fine for VOCS to luch of single volue GRO, due to iplum. 1030-Pegn eviging at Ger-10 430-GW-05-Alsaple time for vots 1100 IG-W-04- Af shaple time for VUCS, TPFLORD + GRO, Jala due, to tack of volume, G-RO to be Collected Monday, 1115 Conduct Belink tests on SV-01,02 1500-Prote up samples air constructor both puss PID= 0.3 0.0 PPM respectively 1745-All personed offside to Fed Ex-717/1/6-- y- 4/12/10

Location Purel Ridge, NY Date 9/12/14 Project/Client Porn Ridge, TBAGO USEDA Location Pord Ridge, NY Date <u>7/12/16</u> Project / Client Pard Ridge - TBA 66 - USEPA 1130-16w-05-B) collected via grad 15V-902-A-Constar 10= 261 Reg. 10/05 D=14100 for DRO. 1145- Begin purging Sink for PW-01 Sciple 1215- Simple for PW-01-A for VX5 Shri the 1580 Cold the 607 Stort park - 30 End prove - 10 [534-AU-0] 1235 AW-2-A Collected wagrab For VOCS G-RO only. 1300-Julon offsile 1305-Spetre to V. Muchan Canisters -CORRECTORE are at hotel, no) Canster ID=114 Reg. 1010-14228 Stort Ameils 34 entire 1604 Stort pressur 28 end pressur 5 1630 - COM Smith pressur 5 to uncharge-- bottle vones. 1340- CDMsnith affine to retried dir Carsters from hotel 1500 Ame tack ons & with ar Cantsky 5V-01-A? Constr 1D# 161 Regulator 1D= 14033 sturt fre: 15:17 end trd: 1557 gripth. shirt pressur-33 and pressur- 8 1520-SV-02-A unster 10 # 387 Regulator 10= 14064 79/12/16 Stort the 1530 End the 1557 1607 stort pressur -31 end press P-8-5 779/12/10 Rite in the Rais

Appendix C

Appendix C

Soil Boring Logs

	Con	DM Sm	ith	Ra 11 Ec	aritan Plaza 0 Fieldcres lison, New	a I st Ave, 6th F Jersey 088	loor 37	Page of Boring Name: 5B~01
	Clien Proje	t: USEPA ct Locati	on: Wa	shington '	Township	→-NJ-	:	Project Name: P VGC Superfund Site, OU3 Project Numbe r: 101995.3323.0 40 Pound Rid
	Drillin Drillin Samp Drillin North East;	ng Contra ng Metho ble Metho ng Date: n:	actor: A d: [d: 9/7//	n rs Ta VPT 15	lan	a.		Surface Elevation (ft amsl): Total Depth: 15 Depth to Initial Water Level (ft bgs): 11 Hog Field Screening Instrument: PPB RAE Logged by: 7 - 12
0	Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description
0	-)	_	Ô-s	2.2	0.0	SM SM	0-0.5 - Dort brown Sand; SILT, Topsoil 0.5-1.3- 54A Lightbown
5	-		ų				ML	1.5-1.8- Dort gray clayer SILT, grave 1 1.6-1.8- Dort gray clayer SILT, grave 1 1.8-2.2 - Cobb/9
24		2		5-10	2.8	0.0	SM	5.0-7.3 - Medium gray Silty clayer med. SAND, noist dense, abunduit gra 3.nch cobble at 7.5 feet bg;
10	-	N	×	10- 13	3.7	0.0	SM	10-13-5AA Wetat 11
15		-14	Ē	refusa	.			
e.		is .	1	а Л	×	2 2	4	
20	-	n A to		u V				
n R	Remarks	3 .				2 	51 V 4	
			j ^e k U					7* Ø 10

.

(

(Clier	DN Sm t: USEP4 ect Locat	ith ion: Wa	Ra 11 Ec shington	aritan Plaza 0 Fieldcres lison, New	t Ave, 6th F Jersey 088	Floor 337	Page of Boring Name: <u>5</u> B-03 Project Name: PVGC Superfund Site, OU3 Project Number: <u>101995:3323.040</u>
		Drilli Drilli Sam Drilli Nort East	ng Contr ng Metho ple Metho ng Date: h:	actor: \mathbf{A} od: od: 9/-	Tal 1/16	pton	÷		Surface Elevation (ft amsl): Total Depth: 15 Depth to Initial Water Level (ft bgs): 10, 5 Field Screening Instrument: PPB RAE Logged by: 100056
_	0	Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description
	5			-	Ö-S	2.5	0.0	SU ML ML	0-0.5 - Agohult 0.5-1.1 - med. Brown, s: Ity SAND, grovel, d 1.1-2.0. Olive gray, cluyey, sordy SILT, Moist, Stiff., some gravel. 2.0-2.5-SAA, darkgray
	c t		2		5- <i>1</i> 0	4.0	36.2- 12.0- 12.0- 14.9-7.	SM S.Sftby Cofteys Sftbys Sftbys Sftbys Sftbys	50-9.0-red Gray, silt and sand moist, some gravel, petroleum odor
	10		3	-	10-15	3.1	0.5	SM	10.0-10.5- CODDIR 10.5-13.1- Medgray siltend Sand, wet, grave l, hord
	15		л v а		10			3	
(20	Remark	s:					1	т.

			•							
	C	DM Smi	ith	Ra 11 Ed	aritan Plaza 0 Fieldcres lison, New	I t Ave, 6th F Jersey 088	loor 37	Page of Boring Name: SB-04		
	Clier Proje	nt: USEPA ect Locati	on: ₩a	shington-	Township	, NJ		Project Name: PV GC Superfund Site, OU3 Project Number: 1 01995.3323.0 40 Park Ruge		
	Drilli Drilli Sam Drilli Norti East	ng Contra ng Metho ple Metho ng Date: (h: :	actor:-A d: $\frac{9}{7}$	RS DÍ Tal	PT lan	Surface Elevation (ft amsl): Total Depth: 15 tep 166 Depth to Initial Water Level (ft bgs): 11 1469 Field Screening Instrument: PPB RAE Logged by: 7. 10458				
0	Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description		
U	- 1×			0-5	2,5	0.0	5W	0.0-0.5-Asphult 0.5-2.5-Redbrown-graelly SAMS aburdut SILT, dry		
5	-		5		3					
		2	5. 	5-10	2.0	0.0	Sm	5.5-5.3- Coole Surgarel Surgarel S8-70-Broy bonn sithe scul		
10	-				×. ,		SM	dense, dry, some gravel		
10		3		10- 15	0. 3. S	0.9 10.5 feet	Sm	10.0-11.5 - SAA, we tat 11++ 5		
15	-	1.				bgS	ــــــ	abundant grovel, wet		
				2 K						
20		,						: : :		
	Remark	(S:								

Å

(

Ċ

CDM Page of Raritan Plaza I 110 Fieldcrest Ave, 6th Floor Boring Name: SR-05 Edison, New Jersey 08837 Project Name: PVOC Superfund Site, OU3 **Client: USEPA** Project Location: Washington Township, NJ Project Number: 101995.3323.040 NPT Drilling Contractor: ARS Surface Elevation (ft amsl): **Drilling Method:** Total Depth: 1 く Talon Sample Method: Depth to Initial Water Level (ft bgs): 9.5 **Drilling Date:** 9/18/16 Field Screening Instrument; PPB RAE North: Logged by: , Tonapp1 East: OVM Reading (ppm) Recovery (ft) Blows per 6 inches Graphic Log Sample Interval (ft) Sample Number Depth (ft. bgs) Material Description A-D. J-Concret 0 SM O. 21-2 Mediumbrowny sandy SILT, savegrael SM \hat{U}^{-2} 0.0 1.2 20-32- 5AA 0.0 2 2-4 SM 1. [4-6 40-60-SAA ().0SM 5 60-7.9- SAA movist SM 6-8 1.9 0.0 Ч 8.0-4.5-SIA.A. SM 5 8-102.0 0.0 9.5-10.0-6-raybrown clayey SAMA Silty, some gravel, ang ulur, wet ML 10-10-12 2.0 0.0 ML 6 10.0-12.0-5.AA Step at 12 feet by s 15 20 Remarks:

Page of the second start of the seco			*					11	
Client: USEPA Project Location: Weshington Township, Na-Project Name: PLGC_Superfund Site, OU3 Project Number: 101995.3328.940 Surface Elevation (ft ams): Total Date: $(1/9)/C$ Project Number: 101995.3328.940 Project Number: 101995.3328.940 Surface Elevation (ft ams): Total Date: $(1/9)/C$ Project Number: 101995.3328.940 Project Number: 101995.3328.940 Surface Elevation (ft ams): Total Date: $(1/9)/C$ 0Surface Elevation (ft ams): Total Date: $(1/9)/C$ Talen Talen Depth to Initial Water Level (ft bgs): $(O Atlgs)$ Popt to Initial Water Level (ft bgs): $(O Atlgs)$ Remarks:0 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 10 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 2 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 3 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 10 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 11 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 2 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 3 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 10 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 11 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 12 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 13 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 14 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 15 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 16 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 17 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 18 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ 19 $(1/9)/C$ $(1/9)/C$ $(1/9)/C$ <		C		ith	Ra 11 Ec	aritan Plaza 0 Fieldcres lison, New	a I st Ave, 6th F Jersey 088	Floor 337	Page of Boring Name: 5B-06
Project Location: Westington Township, Nd- Project Location: Westington Township, Nd- Drilling Contractor: ARE Drilling Contractor: ARE Drilling Date: $1/8/1/C$ North: East: 1/8/1/C 1/8/		Client	t: USEPA						Project Name: PVGC Superfund Site, OU3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Proje	ct Locati	on: Wa	shington -	Fownshi f	, NJ -	Project Number: 101995.3323.040 Pond	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Drillir Drillir Samp Drillir North East:	ng Contra ng Metho de Metho ng Date: :	actor: A d: d: {/8	116 T	1PT alon	Surface Elevation (ft amsl): Total Depth: 15 Depth to Initial Water Level (ft bgs): 10 Afg Field Screening Instrument, PPB RAE Logged by: 1, 70 - 632		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description
$ \begin{array}{c} $.0			-	0-s	2.7	0.0	SM	0-0.3 - Asphalt 0.3-1.1 - Fill-med. Grown siltend Sond dry losse abuduit gravel
5 5 7 8 10 10 10 10 Remarks: 5 5 -10 3.4 5.7 10 3.4 5.7 10 3.4 5.7 5.7 10 3.4 5.7 5.7 10		-	2 9 1				E w	CL	1.1-1.3 -Dart gray Solty (LAK Some
$10 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	-			1			J.M.	1.3-2.6- Save as 0.3-1.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-					0.1	1 CL	2.0-2. 1- Sare as 1.1-1.3- wet
$10 \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	\mathbf{i}	ал. 19.	5-10	3.4	5-7 Hi	CL	5.0-1.5-SAA
10 3 10 ⁻ Remarks:		-	<				0.2 7-85 FT	M.	5.5- 8.3 - Olive brown, clayedy sendy, SILT, mist, film
15 20 Remarks:	10	-		* 11 ¹² 1				ML	10.0-10.1 - SAA
15 20 Remarks:	2		3		10- 15	3.2	0.0	ML	12.0-13.2-SAA, more send, abundant gravel
15 20 Remarks:		_			12 .				
20 Remarks:	15	-			9)			-	
20 Remarks:	-	-				55		875. 	
20 Remarks:	*	-		5 g	1				
20 Remarks:		-		20 20		æ			
20 Remarks:	00	-		10			×	6	
	20	Remarks	s:	1	1		22 22	I	

;
C	DM	l ith	Ra 11 Fo	aritan Plaza 0 Fieldcres lison, New	a I st Ave, 6th F Jersey 088	loor 37	Page 1 of β Boring Name: $SR^{-0}7$ A + A
Clier	nt: USEPA						Project Name: PVGC Superfund Site, OU3
Proje Drilli Drilli Sam Drilli Nortl East;	ect Locati ng Contra ng Metho ple Metho ng Date: h:	on: We actor: A d: d: 9/{	shington ARS 3//6	alon PT), NJ		Project Number: 101995.3323.040 Surface Elevation (ft amsl): Total Depth: 15 Depth to Initial Water Level (ft bgs): 11.0 Field Screening Instrument: PPB RAE Logged by: 7.70-05010
Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description
	l		o-s	2.7	0.1 at 0.5 #16 Q.9 at	SM SM SSW	0.0-0.5- Med brown sondy SILT, Ury 0.5-0.8 Comy, SILT and SAND, dry, 1259 0.81.8-Med. Grown graelly SAND silt, 1008, dry
-					1.5 ft 63 27.9 ú 2.0 ft	s SM	1.8-2.1-Same 6.50.5-0.85 grovelly 2.1-2.7. Dort brown, sandy SILT Toose, dry, some growel
	2		5-10	4.0	0.2	570(Surly SILT, abundant gravel iron staning days, nottled 6.5-9.0-5AA waist
	3		10-15	2.5	0.3at 10.5tt 5.7at 11.0 ft	SM ML	10.0-11.0-medgray brown SILTand SAND, some group, day, loosp 11.0-12.5-01 ve gray, sondy SILT Clayey, some free grael, stiff, wet
-		3			11.5 84		
		,	C.			9 192	
ـلـ Remarks	l	1		-			9

, C

Ċ

C

CDM Page of Raritan Plaza I SB-08 110 Fieldcrest Ave, 6th Floor **Boring Name:** Edison, New Jersey 08837 Project Name: PVGC Superfund Site, OU3 Client: USEPA Project Location: Washington Township, NJ-Project Number: 101995.3323.040 APT Drilling Contractor ARS Surface Elevation (ft amsl): **Drilling Method:** Talon Total Depth: 7 Sample Method: Depth to Initial Water Level (ft bgs): Drilling Date: 9/7//6 Field Screening Instrument, PPB RAE North: Logged by: 7. Tomose/ la East: OVM Reading (ppm) Recovery (ft) Blows per 6 inches Sample Interval (ft) Graphic Log Sample Number Depth (ft. bgs) Material Description 0 0.0-0.3- Asphalt 0.0-0.3- Asphall 0.3-0.9- Dart red brown median solly 5AND Dry loose 0.9-1.2 - Cobbly 1.2-4.5- Very lightbrown fore SAND abandant Silt and gravel, on 1 53 SP 0-5 at 1.5 4.5 feetby s SW 0.0 otherwise 5 5.0-7.0-SAA Cobblefm 0.0 SW 2 notis 10 3 D-IS 15 20 Remarks:

	Proje	ect Locati	tion: Wa	shington-	Township) , NJ		Project Number: 101995.3323.040
	Drilli Sam Drilli Norti East	ng Metho ple Metho ng Date: h:	actor: P od: od:	070T 17/16	lon		1	Surface Elevation (ft amsl): Total Depth: [3] Depth to Initial Water Level (ft bgs): 9.8 Field Screening Instrument: PPB RAE Logged by: 7 Jornaul (h
0	Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description
0	-	١		0-s	3.5	D.0	SW SW	0-0.8-Asphilt 0.5-1.0-Lightbrown, silty SAM Toose dry 1.0-2.0-Lightgray brown silty
5	-						sh sh	gravelly SAM dry loose asphalt 1.7.1. 20-2.3- Spine as 0.5-10 2.3-3. S- Five SAMD, gravelly, white
		2		5-10	5.0	0.0	Sw	50-100-5AA, dry dampat 8.0, wet at 9.8 feeto
10	-		3		e e			
10		3		10-15	5.0	0.0 faint petroleu	50 56/ 54/	10.0-12.0-SAA 12.0-13.8-Olivegray, med. StMD Some Silt, aburdant gravel, wet, Firm 13.8-15.0-SAA, soft
15	·	× ×			2	00.07		
					A.			
	-				12			

Ċ

	C	DN Sm	ith	Ri 11 Ec	aritan Plaza 0 Fieldcrea dison, New	a I st Ave, 6th I Jersey 088	Floor 837	Page of Boring Name: SB ~ 10
	Clier Proj	nt: USEPA ect Locati	a ion:Wa	shington	Towns hir	⊃ , NJ		Project Name: PVGC Superfund Site, OU 3 Project Number: 10 1995.3323.040
	Drill Drill Sam Drilli Nort East	ing Contra ing Metho ple Metho ing Date: h:	actor:4 od: od:	Talon $9/7/1$	DT K	×	P	Surface Elevation (ft amsl): Total Depth: 12,5 Depth to Initial Water Level (ft bgs): 10 Field Screening Instrument; PPB RAE Logged by: 7 70-asp/1
0	Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description
0	-	Ì		0-5	3.5	0.0	Sh	0-0-5- Asphalt 0-5-1.2 - Red boun, sitty SAND trace gravel, dup, soft
	-		1				54	tap, abirdut grave, moust, hord
5	-						SM	5.0-10.0-5A.A.
	-	2		5-10	5.0	0.0		
10	-							lofest mater table
	-	Z		10- 12:5	25	27 at 1151 095	\$M	SAA, durk gray stained, saturated
ж В	-		*0			2 SY at IRF	bacy s	
15	-			Return		450at	12.5 feet	by s
	-	2						
20		a a	- 					Р — — — — — — — — — — — — — — — — — — —
	Remark	s:						

C

C

	C	DM Smi	ith	Ra 11 Ec	aritan Plaza 0 Fieldcres lison, New	t I It Ave, 6th F Jersey 088	Floor 137	Page of (Boring Name: SR-//
	Clier	nt: USEPA	on: Wa	shington	Townshir	N N I		Project Name: <u>PVGC Superfund Site</u> , OU3
	Drilli Drilli Sam Drilli Norti East	ng Contra ng Metho ple Metho ng Date: h:	actor: 4 d: d: 9/8/	1677 1007 11077	lon	, NO		Surface Elevation (ft amsl): Total Depth: { } Depth to Initial Water Level (ft bgs): { } Field Screening Instrument: PPB RAE Logged by:] .] [] [] [] [] [] [] [] [] [
0	Depth (ft. bgs)	Sample Number	Blows per 6 inches	Sample Interval (ft)	Recovery (ft)	OVM Reading (ppm)	Graphic Log	Material Description $g_{\alpha\gamma}$
U	-	1		0-5	2.7	0.3	sm SM	0.0-1.1- med. brown, the SANDISILT Dry Toose, trace gravel 1.1-2.5-SAA, med brown, iron staring
5	-					21Pf a't 0.8	46W	2.5-2.7- Red Grown, sondy GRAVEL some silty dry
0		2	12	5-10	5.0	0.0	SV	S.O-7.S - Light Grown Silty SAND M-F some gravel, 1: H le ivon Staining dry, lowr 7.5-8.0 - Balder
10	-						5m	8.0-10.0 - Gray Mo.S. France clay abundant grovel, hard
	-	3	e. 7	10-13	2.7	0.0	sm Sm	10.0-11.0-SAA 11.0-12.7-SAA, wet, hord, moesond,
15	-			Netisal	38469.	ŝ		
	-		c					
		8		8 B 1	0	2 22		
20	Remarks	S:	Γ.					

2

0

 \bigcirc

 C^{\ast}

Appendix D

Appendix D

Groundwater Sampling Logs

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. ft TIC or ft BGS TURBIDITY Instrument: (circle one) (主 10%) NTUs ft TIC or ft BGS (circle one) 19.92 - 153.6 26.79 -152.8 POTENTIAL w/s 2.2. (土 10 mV) REDOX >m< DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 μS/cm = 1 mS/cm TIC = Top of Inner Casing BGS = Below Ground Surface (circle one) 20.21 20,70 (主 10%) TEMP. Units: ů SCREENED/OPEN BOREHOLE INTERVAL: DISSOLVED ml/minute 494 ROCKL/ Horiba U-22 1.19 OXYGEN 1.5% (主 10%) 3,9 (not %) mg/L 77 Westchester Avenue, Pound Ridge/Scotts Corners Site LOW FLOW GROUNDWATER SAMPLING PURGE RECORD DEPTH OF PUMP INTAKE: S/cm,/mS/cm°//or uS/cm (circle one) 2 SAMPLE FLOW RATE: 46 MA CONDUCTIVITY 0.575 WELL #: PW-01 0.579 0.574 0.58 SPECIFIC Pound Ridge, New York (± 0.1 SU) (± 3%) Other (specify). YSI Model # 7.83 6.59 6.55 6.7 Нd SU DRAWDOWN (± 0.3 FT) ft TIC / ft SAMPLE TIME: BGS Complete and/or Circle at right (FDV) \underline{C} FLOW RATE nstrument Type/Model: Units: ft TIC / ft BGS (circle one) DEPTH TO WATER SAMPLE ID: //w-0/-4 CLP ID: WEATHER CONDITIONS: Hiters (circle 50010 200 VOLUME PURGED 0001 50 gallons C date: 9/12/14 SAMPLERS: Typical values: 12 10 205 Non CURRENT 5 24-Hour 2 0 TIME

			1		[1	1	<u>т к</u>		Т	1	T	1.0	
(\sim	e)	TIC or ft BGS	ircle one)	Instrument:	La Mothy	TURBIDITY		(王 10%)	NTUS		66.4	33.7	26.4	20.3	17.2	14.0	6.33	5,42	five minutes. The renthesis.	
1981	th=(7.7	3GS (circle on	:# ₩	(<u>c</u>	le)		REDOX	POTENTIAL	(主 10 mV)	МV		106.6	129.6	147.3	152.6	155.9	161.8	163.4	167.4	r every three to i s indicated in pa	
P10=2	otal Dep	TIC of ft E		2	(circle or		TEMP.		(主 10%)	Units:	ů	20.06	26.01	21.09	21.14	21.33	21,10	21.47	21.51	uld be taker easurement	NTIIC
	cord s Site	: 14 #	HOLE INTERV	ml/minute	oriba U-22		DISSOLVED	OXYGEN	(土 10%)	mg/L	(not %)	3.18	1, 86	0.95	0.28	0.83	0.78	0.81	6.79	g. Readings sho adings by the m	idity = 0 - 5001
	IPLING PURGE REC idge/Scotts Corner w York	#: ///////////	ENED/OPEN BOREH	N RATE: 250	ECCXL IH	fy)	SPECIFIC	CONDUCTIVITY	(± 3%)	S/cm, mS/cm°/or	µS∕cm (circle one)	0.280	0.876	0.874	0. 270	D. 368	0. 268	O. 866	G. 365	ml/min during sampling or three consecutive re	Turt
$\left(\right)$	WATER SAM ue, Pound Ri nd Ridge, Ne	WELL 3	SCREE	AMPLE FLOV	YSI Model #	Other (speci	Hd		(± 0.1 SU)	SU		7.22	6-69	6.57	6.53	6.50	649	6.48	6.18	purging or 250 ave stabilized fi	, Vm
	LOW GROUND tchester Aven Pour			TIME: []YS S.		jht	DRAWDOWN		(± 0.3 FT)	ft TIC / ft	BGS	0.22	0.25	6.26				1	€	500 ml/min during ator parameters h	ntial = -100 - +60C
	LOW F 77 Wes			SAMPLE	Model:	Circle at rig	FLOW	RATE		Junits:	hud/In	300	300	300	300	300	300	300	300	I not exceed { /hen the indic	Redox Potel
					Instrument Type/	Complete and/or	DEPTH TO	WATER 10 CA	00.01	ft TIC / ft BGS	(circle one)	10.82	lo.85	10.86					>	et. Flow rate should eady for sampling w	1g/L
		119	SNDITIONS:	MW-1-4	6		VOLUME	PURGED		gallons /	hters acircle	1,5	3.0	4. S	9	7, 5	<u> </u>	10.5	7	d stabilized and r	DO = 0.3 - 10 m
		date: q^{\prime}/q samplers:	WEATHER C(SAMPLE ID: CLP ID:		2	CURRENT	TIME		24-Hour	10:55	1/:00	11:05	Q1:11	(1:1)	11:20	52U	1130	1135	Urawdown is not well is considere	Typical values:

DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (μS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 μS/cm = 1 mS/cm TIC = Top of Inner Casing BGS = Below Ground Surface

LOW FLOW GROUND 77 Westchester Aven SAMPLE TIME: [23] s Model: Model: Image: Sample Time: [23] s Model: Image: Sample Time: [23] s Image: [24] s Image: [25] s Image: [26] s	IOW FLOW GROUND 77 Westchester Aven Poun MMNJ<75'F SAMPLE TIME: [23] S MINNJ<75'F SAMPLE TIME: [23] S	WATER SAMPLING PURGE RECORD $0 = 0 \text{ fm}$ for $0 = 0 \text{ fm}$ for $10, 90 \text{ fm} = 10, 90 \text{ fm}$ and Ridge, New York	WELL #: MW D2	DEPTH OF PUMP INTAKE: $\int \int \partial O dt$ TIC or ft BGS (circle one)	SCREENED/OPEN BOREHOLE INTERVAL: $ \hat{0}, 79, 1 $ ft TIC or ft (GS)	AMPLE FLOW RATE: Grad ml/minute (circle one)	YSI Model # <u>いい メトレー</u> / Horiba U-22 (circle one) Instrument:	PH SPECIFIC DISSOLVED TEMP. REDOX TURBIDITY	CONDUCTIVITY OXYGEN POTENTIAL	(± 0.1 SU) (± 3%) (± 10%) (± 10%) (± 10 mV) (± 10%)	SU S/cm/mS/cm ^e //or mg/L Units: mV NTUs	µS/cm (circle one) (not %) °C	6.80 0.982 0.43 27.78-71.3				
	MMNJ F5 F Instrument Type/ Instrument Type/ Complete and/or DEPTH TO WATER M TIC / A BGS (ciccle one) (ciccle one)	LOW FLOW 77 Westches				SAMPLE TIME:	Model: Circlo at richt	FLOW DRA	RATE	0 (1 0)	Units: ft TI0	BGS		A state			
NW - 02 - 1 MW - 02 - 1 MW - 02 - 1 Iters (circle		т. <u>и</u> и	DATE: 9	SAMPLERS:	WEATHER CO	SAMPLE ID: CLP ID:	2 ¹	CURRENT	TIME		24-Hour		No Flow	Gral Se-			

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing BGS = Below Ground Surface

DATE: $\mathcal{B} \mathcal{W} \mathcal{A} / \mathcal{A} /$			77 Wes	tchester Aver Pou	iue, Pound F nd Ridge, Ne	Ridge/Scotts Cornel ew York	rs Site	1	3.004	(Z)
SAMPLERS: ///	(lb 		ý.		WELL	#: GW-0100		,		
	~				DEPTI	H OF PUMP INTAKE	: \$\$13 #	TIC or ft	GS) (circle on	le)
WEATHER CONDIT	LIONS: &	3 % party	(lough	146D	SCRE	ENED/OPEN BOREH	HOLE INTERV	AL: V-	# *	TIC or ft BGS
SAMPLE ID: GW CLP ID:	1-10-	t hall have	SAMPLE .	TIME: 4000 S	AMPLE FLO	W RATE:	ml/minute	e ^{re}	<u>)</u>	ircle one)
		Instrument Type.	/Model:		YSI Model	# 600 × L /H	oriba U-22	(circle on	(e)	Instrument:
5		Complete and/or	· Circle at rig	jht	Other (spec	sify)				Lanotte
CURRENT VOLI	UME	DEPTH TO	FLOW	DRAWDOWN	Hd	SPECIFIC	DISSOLVED	TEMP.	REDOX	TURBIDITY
TIME	GED	WATER a L	RATE	13	:	CONDUCTIVITY	OXYGEN		POTENTIAL	
		J CI		(<u>± 0.3 FT</u>)	(± 0.1 SU)	(主 3%)	(主 10%)	(± 10%)	(± 10 mV)	(± 10%)
24-Hour gallo	/ su	ft TIC (ft BGS	Junits:	ft TIC / ft	SU	S∕cm, mS/cm°/ or	mg/L	Units:	шV	NTUS
liters	(circle	(circle one)	m-/mi	BGS		µS∕cm (circle one)	(not %)	ပ္စ		
5.55 8	房		it es	÷.	6.25	3.758	0.94	20,43	F.58-	>[000
9:00 L	vell	han	olhy	- La	it A	or well	Jens			
		モナー	フ		2	- 20	9		÷	
(mal sap)	le cel	lected f	or Va	12 + 20	no ca	2				
				2						
		÷					4			
				×						
rawdown is not to exc rell is considered stabi	seed 0.3 fee ilized and re	et. Flow rate should eady for sampling v	d not exceed { when the indic	500 ml/min during ator parameters }	i purging or 250 iave stabilized) ml/min during samplin for three consecutive re	 Readings sho adings by the me 	uld be taken	every three to	five minutes. The

DWATER SAMPLING PURGE RECORD THE, POUND RIDGE/SCOTTS CORNERS SITE POUND RIDGE/SCOTTS CORNERS SITE PAGE PURCHART	WELL#: UNOS	DEPTH OF PUMP INTAKE: 2 3 ft TIC of tBGS (circle one)	SCREENED/OPEN BOREHOLE INTERVAL: $2.5 - 2.5$ ft TIC or ft BGS	SAMPLE FLOW RATE: ml/minute (circle one)	YSI Model # 600 YC / Horiba U-22 (circle one) Instrument:	Other (specify)	PH SPECIFIC DISSOLVED TEMP. REDOX TURBIDITY	CONDUCTIVITY OXYGEN POTENTIAL	SU S/cm, mS/cm ^c / or mg/L Units: m/ NTUs NTUs	μS/cm (circle one) (not %) °C	7.07 0,942 23.5 22.01 47. 4 >1000	1 Reclarate						g purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The have stabilized for three consecutive readings by the measurements indicated in narenthesis.
RGE RECORD :s Corners Site	05	INTAKE: 2.3 ft TIC	N BOREHOLE INTERVAL:	ml/minute	/ Horiba U-22 (×.	DISSOLVED	VITY OXYGEN	(± 10%) (± 0) (± 0) (± 0) (±	cle one) (not %) of	1 23.7°							ig sampling. Readings should secutive readings by the meas
DWATER SaMPLING PUI nue, Pound Ridge/Scott und Ridge, New York	MELL #: DW-	DEPTH OF PUMP	SCREENED/OPEI	SAMPLE FLOW RATE:	YSI Model # 600 NV	Other (specify)	pH SPECIFIC	(+ 0.1 SUN (+ 282)	SU S/cm, mS/	µS∕cm (cir	7.07 0,94	it reclarate	(²					g purging or 250 ml/min durir have stabilized for three cons
LOW FLOW GROUNI 77 Westchester Ave Pou			cloudy	SAMPLE TIME: H30 :	Aodel:	Circle at right	FLOW DRAWDOWN	RATE (+ 0.3 FT)	Units: ft TIC / ft	BGS	8	1 - Wait fo	for VOCS ON		a .			not exceed 500 ml/min durin the indicator parameters
е — — шек 8 2	т. Т	17	as purty	¥	Instrument Type/N	Complete and/or (DEPTH TO	WATER	ft TIC / ft BGS	(circle one)		(ran dry	the collected	2				feet. Flow rate should r d ready for sampling wh
	(16		SNDITIONS:	1-50-MG			VOLUME	PURGED	gallons /	liters (circle		Well	malsen				E.	d stabilized an
	рате: <i>9</i> /9	SAMPLERS:	WEATHER C(SAMPLE ID: (CLP ID:		÷	CURRENT	TIME	24-Hour		9:32	9:36	1430 - (- 1.5		Urawdown is not well is considered

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm L 1/Wb10/111 1.4 e.011/hmf/c TIC = Top of Inner Casing BGS = Below Ground Surface Turbidimeter her working ptry off yaponiu to Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. SCREENED/OPEN BOREHOLE INTERVAL: $\mathcal{E}_{\mathcal{U}} - [3, 4]$ ff TIC or ff BGS (circle one) TURBIDITY Instrument: (子 10%) NTUs ft TIC or ft BGS (circle one) Tetal eupen= 13.4 POTENTIAL 5.5 -31.50 - 46.6 (<u>± 10 mV</u>) - 46.2 5 -43. REDOX > E 710 = D.2 (circle one) 2818 (主 10%) 21.20 21.14 51.17 TEMP. 21.44 Units: ç DISSOLVED SAMPLE FLOW RATE: $2\delta_0 m \gamma_{m1} m$ l/minute 0.103 / Horiba U-22 0.46 OXYGEN <u>-</u> -547 0.45 (± 10%) (not %) mg/L 77 Westchester Avenue, Pound Ridge/Scotts Corners Site LOW FLOW GROUNDWATER SAMPLING PURGE RECORD DEPTH OF PUMP INTAKE: S/cm, mS/cm3/ or uS/cm (circle one) CONDUCTIVITY WELL #: 6W - 09 1, 155 1 Oy 6 YSI Model # Low XL 1-044 1-041 SPECIFIC 1-14-1 Pound Ridge, New York (± 0.1 SU) (± 3%) Other (specify)_ 6.74 6.73 6.4) 6.59 6.70 Hd SU DRAWDOWN SAMPLE TIME: () bD ft TIC / ft (± 0.3 FT) millinges (MMM) Complete and/or Circle at right mL/ininute 200 mL/ FLOW RATE Units: nstrument Type/Model: 3 WEATHER CONDITIONS: JUNNY, 75'F ft TIC / ft BGS C1.11 DEPTH TO (circle one) WATER GW-09-19 titers (circle SAMPLERS: CH, TT DATE: 9 | 12 | 20 16 VOLUME PURGED gallons / いい 51 . SAMPLE ID: CURRENT 10 2 S 0401 1050 CLP ID: 24-Hour 5401 1050 16 01 TIME

Appendix E

Appendix E

Waste Manifests

	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US I	EPA ID №. N/A		Manifest Document No.	101655	2. Page 1 of
	3. Generator's Name and Mailing Address U.S. EPA REGION 2/POU 290 BROADWAY, 19th FL	ND RIDGE DOR, NEW YO	ATTN: ALISON DEVINE BR, NY 10007	6 - 6 - 1 - 22 ⁻¹			
	4. Generator's Phone (212) 637-	¥158					
	5. Transporter 1 Company Name		6. US EPA ID Number	25	A. State Transpo	orter's ID	10 200
	7 Transmotor 2 Company Name	•	NJD 034 120 104		B. Transporter 1	Phone732-462-3	1001
-	7. Hansponer 2 Company Name		8. US EPA ID Number		C. State Transpo	orter's ID	(***
	9. Designated Facility Name and Site Address		10. US EPA ID Number		D. Transporter 2	s ID	
	ENVIRONMENTAL RECOVER	I CORP			30134	4	
	LANCASTER, PA 17601		PAD 987n266 749		F. Facility's Phor	ne -2627	
	11. WASTE DESCRIPTION		and Jolanson Life	12. C	ontainers	13	14
				No.	Туре	Total Quantity	Unit Wt./V
	a. NONHAZARDOUS NON RE	JULATED		ġ		AL 10.500	1.100
	(GROUNDWATER)	PPROVAL 161	005859-LWT	1	DM	75	
G	b. NONHAZAPDOUS NON DI	CHILATERD		-		10	
E	(SOIL CUTTINGS)	GUI GABIT & LEAD		1		100	
E	AP	PROVAL 161	.0-05860-SPT	0	DM	200	
H A	 MONHAZARDOUS, NON HI (PDP/DEPDTS) 	EGULATED		1			- ⁶ 4
T	AP	PROVAL 161	0-05861-SPT	/	DM	50	
					17.0.0	And a second	
R	d.			Se o			1 T 65 T 8 1 8 1
R	d. G. Additional Descriptions for Materials Listed Abo	ve .			H. Handling Code	es for Wastes Listed Above	
R	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In	ve			H. Handling Code	as for Wastes Listed Above	9
R	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In SITE ADDRESS:	ve formation 77 PO	WESTCHESTER AVE UND RIDGE, NY 10576		H. Handling Code	as for Wastes Listed Above	2 2
R	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In STTE ADDRESS:	ve formation ??? PO	WESTCHESTER AVE UND RIDGE, NY 10576		H. Handling Code	es for Wastes Listed Above	æ
R	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In SITE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials	ve formation rtify that the contents of described on this manife	WESTCHESTER AVE UND RIDGE, NX 10576	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	æ
R	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In STTE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials	ve formation 77 PO rtify that the contents of described on this manife CDM JmtW	WESTCHESTER AVE UND RIDGE, NY 10576 this shipment are fully and accurately described st are not subject to federal hazardous waste re	d and are in egulations.	H. Handling Code	as for Wastes Listed Above	Date
R	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In SITE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name	tormation	WESTCHESTER AVE UND RIDGE, NY 10576 This shipment are fully and accurately described state not subject to federal hazardous waste ro Signature	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	Date
R	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In SITE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name Instructions and Additional Info Printed/Typed Name Instructions and Additional Info Info (Info)	rormation formation 77 PO rtify that the contents of described on this manife CDM JmrUP OM JmrUP Materials	WESTCHESTER AVE UND RIDGE, NY 10576 this shipment are fully and accurately described ast are not subject to federal hazardous waste re	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	Date
	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In STTE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name ADDRESS: 17. Transporter 1 Acknowledgement of Receipt of N Printed/Typed Name	ve formation rtify that the contents of described on this manife CDM Jm tUP	WESTCHESTER AVE UND RIDCE, NY 10576 This shipment are fully and accurately described as are not subject to federal hazardous waste re sis are not subject to federal hazardous waste re Signature	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	Date 7 Day Y 103 A Date 7 Day Y
	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In SITE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials of Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of N Printed/Typed Name 18. Transporter 2 Acknowledgement of Description 18. Transporter 2 Acknowledgement of Description	reformation	WESTCHESTER AVE UND RIDGE, NY 10576 this shipment are fully and accurately described ast are not subject to federal hazardous waster re a Signature Signature	d and are in equilations.	H. Handling Code	es for Wastes Listed Above	Date 7 Day Y 103 Y Date 7 Day Y
	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional Im STTE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name	ve formation Prify that the contents of described on this manife CDM Jm tV MATERIANCIA Materials Materials	WESTCHESTER AVE UND RIDGE, NY 10576	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	Date Date Date Date Date Date
	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional Im STTE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name Printed/Typed Name 18. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name	ve formation rtify that the contents of described on this manife ODM JmtW Materials Materials	His shipment are fully and accurately described stare not subject to federal hazardous waster of Signature	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	Date Daty Y Day Y Date Date Date Date Date
	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional Im STTE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 19. Discrepancy Indication Space	ve formation 77 po rtify that the contents of described on this manife CDM Jm IV ON JM IV ON JM IV Aterials	WESTCHESTER AVE UND RIDGE, NY 10576	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	Date Date Date Date Date Date Date Date
	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional Im STTE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 19. Discrepancy Indication Space 20. Facility Owner or Operator; Certification of recei	ve formation 77 80 rtify that the contents of described on this manife COM JMW Of PANOIF Aaterials Aaterials Pol of the waste materials	VESTCHESTER AVE UND RIDGE, NY 10576	d and are in egulations.	H. Handling Code	es for Wastes Listed Above	Date Date Date Date Date Date Date Date
	d. G. Additional Descriptions for Materials Listed Abo 15. Special Handling Instructions and Additional In SITE ADDRESS: 16. GENERATOR'S CERTIFICATION: I hereby ce in proper condition for transport. The materials Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 19. Discrepancy Indication Space 20. Facility Owner or Operator; Certification of recei	reformation	MESTCHESTER AVE UND RIDGE, NY 10576 this shipment are fully and accurately described ast are not subject to federal hazardous waster re signature Signature Signature	d and are in egulations.	H. Handling Code	as for Wastes Listed Above	Date Date Date Date Date Date Date Date

NON-HAZARDOUS WASTE MANIFEST

FR		FRE	EHO	DLD CA	ART	AGE	E IN(с.		F	BIL	L OF	LADIN D. NJD054	JG 126164
KIGEN			(732) 4	462-1001 • FA	AX (732)	308-09	024		ž			\$ 57	7924	1
350 Pigeon Point Road New Castle, DE 19720 Phone: (302) 658-2005 Fax: (302) 658-6229	175 Bartow 1 Bartow, FL 3 Phone: (863) Fax: (863) 53	Mun. Airport 33830 1533-4599 3-1613		5533 Dunh Maple Hei Phone: (33 Fax: (330)	nam Road ights, OH 80) 835-347 835-3732	44137 3		108 Mor Dunmo Phone: (Fax: (57)	nahan Av re, PA 18 (570) 342 0) 342-73	venue 3512 1-7232 367		132 Myrtl Sumter, S Phone: (80 Fax: (803	e Beach Hwy. C 29153 03) 773-2611) 773-2942	
SHIPPER NAME/ADDRESS	2		PHONE						1	1 1	11	11	1 1 1	
discin nage			(AREA	CODE)	TRAIL	ED								
Pour Ridge N	y.		INACI	119	THAIL	48	98		AFFUI			:		
FCI REP. LOADING (PRINT)	PRO	CEDURE		EQUIP. SPO	TTED	EQUI	P. REMO	VED	TIME	AT SHIP	PER	(MILIT/	ARY TIME ONL	Y)
Mondras	1	LTL	/			-			4	3 . L				
COMMENTS OR DELAYS AT SHIPPER									EQUIP	MENT US	SED	DEP	ARTURE TIME	
											-			
BROKER												Se	20	
PO#:	WO#:		-77		MAN	IFES	ST/D	ocu	MEN	IT NC).	rian	test	4
(X) PROPER U.S. D.O.T. SHIPPING	NAME	U.S. D HAZARDOL	.O.T. JS CLASS	NA/IJN/NO.	PAG	CKING	NO. CONT.	CONT. TYPE		NET	ΓY	UNIT	WASTE NO.	FORM
1 101 185							3	nN	1/	11	-	17		
101630				.	_		2	01-1		~~	<u>G4 1</u>	/		
2										0				
3														
SHIPPER'S CERTIFICATION: This is to ce transportation according to the applicable re named. The consignee can and will accept t	rtify that the gulations of he shipment	above nam the Departm and has a v	ned mate nent of Tr valid pern	rials are prope ransportation, U nit to do so if rea	rly classi I.S. EPA a quired. I c	ied, des and the ertify th	scribed, p State. The at the fore	ackagec e materia egoing is	d, marke als desc true an	ed and la cribed abo nd correct	ibeled an ove were to the b	nd are in p consigne est of my k	proper condi d to the Tran nowledge.	tion for sporter
the contractor.	loes not cons	stitute payme	ent to the	carrier and if the	econtract	ordoes	not pay the	e carrier	, the shi	pper is ob	ligated to	o pay the a	greed rate of	ered to
PLEASE PRINT NAME/TITLE	al 1413	1 47	SHI	PPER'S SIGNA	TURE		i sti	16.19	e.F		DA	TE LOADE	D 2 /	11
front to the top to the	k //-1		X	I HAVE READ THE	ABOVE AND	UNDERST	TAND AND A	GREE TO A	ALL OF ITS	S CONTENT.		/ MO.	DAY	YR.
CONSIGNEE NAME/ADDRESS			PHONE					A.						
ERC			(AREA (CODE)										
, 10			TRACT	OR	TRAIL	ER			APPOI	NTMENT	TIME			
ECIDER LINI CADING (PRINT)	PROC	EDUDE				FOU			711.45			(1.411.177.4		
	PHUC	EDURE		EQUIP. SPOT	TED	EQUI	P. REMO	VED	TIME	AT CONS	SIGNEE	(MILITA	.HY TIME ONL	Y)
									A	RRIVAL T	IME	DEP	ARTURE TIME	
COMMENTS ON DELATS AT CONSIGNEE									EQUIPI	MENT US	SED			
PLEASE PRINT NAME/TITLE				ISIGNEE SIGN	ATURE							TELINIO		
			X	ICIAILE CIAIN	ATONE						DA	/ /	/	
											N	MO.	DAY	YR.
AR H-0257 ME CT CT-HW-307 E DE DE-HW-203 ME DE-SW-203 IL UPW-0190713-OH MI MA MA-294 MN MN	HWH-167 2001-OPV ME-HWT-4 ME-WOT-4 UPW-0190 UPW-0190	-2335 47 47 0713-OH 0713-OH		MO H-1490 ND WH-429 NH TNH-004 NJ S-2265 15939 NY NJ-113	17	OH OH OH PA QL RI	H UPW-0 K UPW-0 NTARIO, 0 A PA-AH JEBEC, 0 RI-535	0190713 0190713 CANADA -0067 CANADA	-OH -OH A A 84 QC-6	10943 6ML-047		TX 4 WI 1 WV 1	10705 1602 JPW-019071	3-OH
White - FCI Original Yellow - FCI Billing Blue - FCI Office/Customer			-								S	57	7924	

Green - Retained by TSDF Gold - Retained by Generator

Appendix F

Appendix F

Data Validation Reports

77 Westchester Avenue, Pound Ridge/Scotts Corners Site Pound Ridge, New York Data Validation Report

Sample Delivery Group (SDG) Number: Laboratory: Matrix: Collection date: Analysis/Methods: 16090771 Bureau Veritas North America Air

09/12/16

Volatile Organic Compounds TO15

Samples in SDG:

16090771-001A	SV-01-A
16090771-002A	AO-01-A
16090771-003A	SV-02-A
16090771-004A	SV-902-A

Data validation was performed in accordance with the specific analytical methods, the U.S. EPA Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15 (June 2014, and SOP HW-31, Revision 6 (June 2014).

Volatile Organic Compounds TO-15

Yes No N/A

N/A

N/A

N/A

Precision:

Are the field duplicate relative percent differences (RPD) $\leq 25\%$? Were the Matrix Spike Duplicate RPDs $\leq 20\%$? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? <u>Comments (note deviations)</u>:

Field Duplicates	<u>TO-15</u>	<u>Sample (ug/L)</u> SV-02-A	<u>Duplicate (ug/L)</u> SV-902-A	<u>%RPD</u> Acceptable	<u>Qualifiers</u>	Associated Samples
LCS/LCSD LCS/LCSD - 4680849	<u>TO-15</u>	<u>%RPD</u> Acceptable	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD N/A	<u>TO-15</u>	<u>%RPD</u>	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	<u>RL</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples

Accuracy:	Yes No N/A
Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency ≥ 5% and laboratory determined control limits)	N/A
Laboratory Control Sample criteria met?	No
Were the Laboratory Method Blank results all < RL?	Yes
Were the Field Blanks results all < RL?	N/A
Was the ICAL criteria met?	No
Was the CCV criteria met?	Yes
Was the Tuning criteria met?	Yes
Were the Surrogate % recoveries within laboratory determined control limits?	N/A
Were the Internal Standard areas within ± 50 - 150%?	Yes
Comments (note deviations):	

Blanks BLK-4680832	<u>TO-15</u>	Concentration Nondetect	<u>MDL</u>	<u>RL</u>	Qualifiers Associated Samples
Field Blank N/A	<u>TO-15</u>	Concentration (ug/L) Nondetect	MDL/RL		Qualifiers Associated Samples
Surrogates	<u>TO-15</u>	<u>%R</u> Acceptable	<u>Limit</u>		Qualifiers Associated Samples

MS/MSD N/A	<u>TO-15</u>	<u>%R</u>	<u>Limits (%)</u>		<u>Qualifiers</u>	Associated Sam	ples.
LCS/LCSD LCS/LCSD - 4680849	<u>TO-15</u> 1,4-Dioxane Naphthalene	<u>%R</u> 131% 140%	Limits 130% 130%		Qualifiers J** J**	Associated Sam All samples All samples	ples
ICAL	TO-15	RRF	**No qualification r	equired - samp	Qualifiers	Associated Sam	ples
							<u></u>
(8/30/2016) (13:09)	1,2,4-Trichlorobenzene Naphthalene	Acceptable Acceptable	35.86% 36.35%		J** J**	All samples All samples	
			**No qualification r	equired - samp	le results non	detect	
CCV	<u>TO-15</u>	RRF	<u>%D</u>		<u>Qualifiers</u>	Associated Sam	ples
(09/15/2016) (8:48)		Acceptable	Acceptable				
Tune	<u>TO-15</u> Acceptable						
Internal Standards	<u>TO-15</u> Acceptable	Area	<u>Area Lower /</u> Upper Limit		Qualifiers	Associated Sam	ples
Canister Information Batch canister certificat	TO-15 ion was performed and res	sults were within criteria.			<u>Qualifiers</u>	Associated Sam	ples
Representativeness: Were sampling procedures an Were holding times met? Was preservation criteria met? Were Chain-of-Custody record Comments (note deviations):	d design criteria met? ? (0° - 6° C) Is complete and provided i	n data package?					Yes No N/A Yes Yes N/A Yes
Holding Time / Canist Hold Time	er Pressure Criteria	Days to Analysis Acceptable	Criteria	<u>Qualifier</u>	Assoc	iated Samples	
		Difference between Initial Pressure and Pressure reading at time of analysis					
Canister Pressure Crite	ria	> 5 for each canister	< 5	J/UJ	All analytes	- all samples	
Comparability: Were analytical procedures ar Comments (note deviations):	d methods followed as def	fined in the QAPP or fiel	d change documen	tation?			Yes No N/A Yes
Completeness (90%): Are all data in this SDG usable Comments (note deviations):	e? -						Yes No N/A Yes
Sensitivity: Are MDLs present and reporter Do the reporting limits meet pr Comments (note deviations):	d? oject requirements?						Yes No N/A Yes Yes
Overall Comments: All data	are usable.						
Data Validator:	Kristine	Mollov	Date:	2/26/2017			

Date: 2/27/2017

Cheríe Zakowskí

Data Reviewer:

77 Westchester Avenue, Pound Ridge/Scotts Corners Site Pound Ridge, New York Data Validation Report

Sample Delivery Group (SDG)	Number:	1609326	
Laboratory:		RTI Laboratories	
Matrix:		Soil	
Collection date:		9/7/2016 & 9/8/2016	
Analysis/Methods:			
		Volatile Organic Compounds 8260A	
		Semivolatile Organic Compounds 8270A	
		Metals (ICP - MS) 6020A	
		Petroleum Hydrocarbons (DRO) / Nonhalogentated Organics (GRO) S	W8015D
		Polychlorinated Biphenyls (PCBs) 8082A	
Samples in SDG:			
1609326-001	SB-06-A	1609326-012 SB-07-B	
1609326-002	SB-06-B	1609326-013 SB-09-B	
1609326-003	SB-906-B	1609326-014 SB-11-A	
1609326-004	SB-10-A	1609326-015 SB-11-B	
1609326-005	SB-01-A	1609326-016 SB-05-A	
1609326-006	SB-01-B	1609326-017 SB-05-B	
1609326-007	SB-04-A	1609326-018 SB-07-A	
1609326-008	SB-03-A	1609326-019 SB-08-B	
1609326-009	SB-03-B	1609326-020 SB-09-A	
1609326-010	SB-04-B	1609326-021 SB-10-B	
1609326-011	SB-08-A		

Data validation was performed in accordance with the specific analytical methods and the U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (September 2016) and the U.S. EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (September 2016).

Volatile	Organic	Compounds	8260C
	-		

Yes No N/A

Yes

N/A

No

Precision:

Are the field duplicate relative percent differences (RPD) ≤100%? Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? <u>Comments (note deviations)</u>:

Field Duplicates	<u>8260C</u>	<u>Sample</u> SB-06-B	<u>Duplicate</u> SB-906-B	<u>%RPD</u> Acceptable	<u>Qualifiers</u>	Associated Samples
 LCS/LCSD VOA10 LCS / LCSD 091816	8260C Acetone	<u>%RPD</u> 49%	Limits 25%		<u>Qualifiers</u> J / UJ	Associated Samples 1609326-001 through 1609326-010
VOA10 LCS / LCSD 09201	Acetone	28%	25%		J/UJ	1609326-011 through 1609326-021
MS/MSD N/A	<u>8260C</u>	<u>%RPD</u>	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
 Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples

Accuracy:	Yes I	No I	N/A
Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency ≥ 5% and laboratory determined control limits)	N	J/A	
Laboratory Control Sample criteria met?	1	٩N	
Were the Laboratory Method Blank results all < RL?	1	٩N	
Were the Field Blanks results all < RL?	N	J/A	
Was the ICAL criteria met?	Y	'es	
Was the CCV criteria met?	1	No	
Was the Tuning criteria met?	Y	'es	
Were the Surrogate % recoveries within laboratory determined control limits?	Y	'es	
Were the Internal Standard areas within ± 50 - 150%?	Y	'es	
Comments (note deviations):			

	<u>8260C</u>	Concentration	DL/LOQ		Qualifiers	Associated Samples
VOATO WIBER 09101	m,p-xylene Methylene Chloride	0.94 4.4	0.56 / 2.0 0.27 / 5.0		None RL U	Sample results nondetect or >LOQ 1609326-001, 1609326-004 through 1609326-010
VOA10 MBLK 09201	Methylene Chloride	3.5	0.27 / 5.0		RL U	1609326-10 through 1609326-021
 Field Blank N/A	<u>8260C</u>	Concentration (ug/L)	<u>DL/LOQ</u>		<u>Qualifiers</u>	Associated Samples
Surrogates	<u>8260C</u> 4-Bromofluorobenzene **	<u>%R</u> 152%	<u>Limit</u> 79-119		<u>Qualifiers</u> J+	<u>Associated Samples</u> SB-03-B
	**1,2-Dichlorobenzene, 1,2,3-Trichlo Isopropylbenzene, Naphthalene, Tol	probenzene, 1,2,4-Tric luene, m,p-xylene, o-x	hlorobenzene, 1 ylene	,3-Dichlorobenzer	ne, 1,4-Dichlorol	benzene, Benzene, Chlorobenzene,
MS/MSD N/A	<u>8260C</u>	<u>%R</u>	<u>Limits (%)</u>		<u>Qualifiers</u>	Associated Samples
 LCS/LCSD VOA10 LCS / LCSD 091816	8260C 1,1,2-Trichloro-1,2,2- trifluoroethane	<u>%R</u> 144 / 134%	<u>Limits</u> 66-136		<u>Qualifiers</u> J**	Associated Samples 1609326-001 through 1609326-010
	Dichlorodifluoromethane	150 / 142%	29-149		J**	1609326-001 through 1609326-010
	Methylene Chloride	120 / 138%	70-128		J	1609326-001 through 1609326-010
VOA10 LCS / LCSD 092016	1,1,2-Trichloro-1,2,2- trifluoroethane	138/ 131	66-136		J**	1609326-011 through 1609326-021
	2-Butanone	162/ 151	51-148		J**	1609326-011 through 1609326-021
	Methylene Chloride	134 / 123	70-128		J	1609326-011 through 1609326-021
				** No qualific	ation require	ed as results are nondetect
 ICAL (9/18/16 11:45)	<u>8260C</u>	<u>RRF</u>	<u>%RSD</u> Acceptable	Corr. Coeff.	<u>Qualifiers</u>	Associated Samples
	8260C	thane	RRF Acceptable	<u>%D</u>	Qualifiers	Associated Samples
	Dichlorodifluoromethane		Acceptable	43.50%	J/UJ 2/03	1609326-001 through 1609326-010
VOA10 CCVE 091816			Acceptable	Acceptable		
VOA10 CCVE 092016 (Closing)			Acceptable	Acceptable		
 Tune	8260C Acceptable					
 Internal Standards	8260C Acceptable				<u>Qualifiers</u>	Associated Samples

Semivolatile Organic Compounds 8270D

Precision:

Are the field duplicate relative percent differences (RPD) $\leq 100\%$? Were the Matrix Spike Duplicate RPDs $\leq 20\%$? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? <u>Comments (note deviations)</u>:

Field	<u>8270D</u>	Sample	Duplicate	<u>%RPD</u>	<u>Qualifiers</u>	Associated Samples
Duplicates	Benzo (2) nyrene	ЗБ-00-Б 2	ЗБ-900-Б 11	138%	None	ABS difference < 5xs I OC
	Fluoranthene	4.5	29	146%	None	ABS difference < 5xs LOG
	Chrysene		12	143%	None	ABS difference < 5xs LOG
	Phenanthrene	2.8	19	149%	None	ABS difference < 5xs LOC
	Acenaphthene	2.4	8.1	NC **	None	ABS difference < 5xs LOC
	Anthracene	4.8	8.1	NC **	None	ABS difference < 5xs LOC
	Benzo (a) anthracene	10	8.1	NC **	None	ABS difference < 5xs LOC
	Benzo (b) fluoranthene	17	8.1	NC **	None	ABS difference < 5xs LOC
	Benzo (g,h,l) perylene	5.6	8.1	NC **	None	ABS difference < 5xs LOC
	Benzo (k) fluoranthene	8.9	8.1	NC **	None	ABS difference < 5xs LOC
	Fluorene	1.6	8.1	NC **	None	ABS difference < 5xs LOC
	Indeno (1,2,3-cd) pyrene	5.2	8.1	NC **	None	ABS difference < 5xs LOC
	Pyrene	5.7	8.1	NC **	None	ABS difference < 5xs LOC

L	_CS/LCSD	<u>8270D</u>	<u>%RPD</u>	<u>Limits</u>	Qualifiers	Associated Samples
١	N/A					

MS/MSD 1609326-005E

<u>8270D</u>	<u>%RPD</u>	<u>Limit</u>	<u>Qualifiers</u>	Associated Samples
2,3,4,6-Tetrachlorophenol	38.3%	25%	J**	1609326-005E
2,4,5-Trichlorophenol	43.7%	25%	J**	1609326-005E
2,4,6-Trichlorophenol	39.7%	25%	J**	
2,4-Dichlorophenol	37.4%	25%	J**	
2,4-Dimethylphenol	32.3%	25%	J**	
2,4-Dinitrophenol	25.9%	25%	J**	
2,4-Dinitrotoluene	58.0%	25%	J**	
2,6-Dinitrotoluene	49.5%	25%	J**	
2-Chloronaphthalene	30.6%	25%	J**	
2-Chlorophenol	26.4%	25%	J**	
2-Methylnaphthalene	27.0%	25%	J	
2-Methylphenol	31.6%	25%	J**	
2-Nitroaniline	27.3%	25%	J**	
2-Nitrophenol	60.3%	25%	J**	
3-Nitroaniline	41.9%	25%	J**	
4,6-Dinitro-2-methylphenol	43.8%	25%	J**	
4-Bromophenyl-phenylether	27.2%	25%	J**	
4-Chloro-3-methylphenol	39.4%	25%	J**	
4-Chlorophenyl-phenylether	27.9%	25%	J**	
4-Nitroaniline	46.0%	25%	J**	
Acenaphthene	32.8%	25%	J	
Acetophenone	200.0%	25%	J**	
Benzo (a) anthracene	34.9%	25%	J	
Benzaldehyde	200.0%	25%	J**	
Benzo (a) pyrene	25.8%	25%	J	
Benzo (b) fluoranthene	40.7%	25%	J	
Benzo (g,h,l) perylene	41.9%	25%	J	
Benzo (k) fluoranthene	44.4%	25%	J	
	00 70/	05%	J**	
Bis (2-chloroetnoxy) methane	36.7%	25%		
Bis (2-ethylhexyl) phthalate	38.9%	25%	J	
Butylbenzylphthalate	83.6%	25%	J**	
Caprolactam	200.0%	25%	J**	
Carbazole	37.9%	25%	J	
Chrysene	26.0%	25%	J	
Di-n-butylphthalate	3635.0%	25%	J**	
Di-n-octylphthalate	58.8%	25%	J**	
Dibenzofuran	30.3%	25%	J**	
Diethylphthalate	34.5%	25%	J**	
Dimethylphthalate	30.4%	25%	J**	
Fluorene	26.0%	25%	J	
Hexachlorobenzene	27.4%	25%	J**	
Indeno (1,2,3-cd) pyrene	29.1%	25%	J	
Isophorone	29.4%	25%	J**	
N-Nitrosodiphenylamine	26.3%	25%	J**	
N-Nitroso-di-n-propylamine	32.8%	25%	J**	
Naphthalene	25.6%	25%	J	
Nitrobenzene	39.9%	25%	J**	
Pentachlorophenol	25.8%	25%	J**	•
Phenanthrene	40.8%	25%	J	1609326-005E
Pyrene	188.0%	25%	J	1609326-005E

** No qualification required as results are nondetect

Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples
Accuracy:						Yes No N/A
Was the Matrix Spike/Matrix Spike Duplic	ate criteria met? (frequency ≥	5% and laborator	y determined co	ontrol limits)		No
Laboratory Control Sample criteria met?						Yes
Were the Laboratory Method Blank result	s all < RL?					Yes
Were the Field Blanks results all < RL?						N/A
Was the ICAL criteria met?						Yes
Was the CCV criteria met?						No
Was the Tuning criteria met?						Yes
Were the Surrogate % recoveries within laboratory determined control limits?						
Were the Internal Standard areas within ± 50 - 150%?						
Comments (note deviations):						

Blanks MB-41091	<u>8270D</u>	Concentration Nondetect		<u>DL / LOQ</u>	<u>Qualifiers</u>	Associated Samples
Field Blank N/A	<u>8270D</u>	Concentration (ug/L)	<u>DL / LOQ</u>		<u>Qualifiers</u>	Associated Samples
Surrogates	8270D Terphenyl-d14*	<u>%R</u> 133.0% 137.0%	<u>Limit</u> 54-127 54-127		Qualifiers J+	Associated Samples SB-06-A SB-03-A
		101.070	01 121			
	1,4-Dioxane-d8*	13.2%	25-130		J- / UJ	SB-07-A
	2-Fluorophenol*	20.5%	35-115		J- / UJ	SB-07-A
	2-Fluorobiphenyl* Phenol-d5*	35.9% 27.6%	44-115 33-122		J- / UJ	SB-07-A SB-07-A
MS/MSD	<u>8270D</u>	<u>%R</u>	Limits (%)		Qualifiers	Associated Samples
1609326 0055	2 4-Dinitrophenol	12 / 19 4%	50-130		1/111	1609326-005
1009320-003E	3 3'-Dichlorobenzidine	0/0%	22-121		J/03	1009320-005
	4-Nitroaniline	37 9 / 60 9%	50-130		.1/U.1	
	Acetophenone	0 / 53.1%	33-115		J/R	
	Atrazine	0 / 0%	47-127		J/R	
	Benzaldehyde	0 / 52%	50-130		J/R	
	Benzo (g,h,l) perylene	54.8 / 20.7	43-134		J/UJ	
	Biphenyl	0 / 0%	40-117		J/R	
	Bis (2-ethylhexyl) phthalate	94.9 / 146	51-133		J	
	Butylbenzylphthalate	45.9 / 179	48-132		J	
	Caprolactam	0 / 72.5	46-117		J/R	
	Hexachlorocyclopentadiene	0 / 0%	50-130		J/R	
	Indeno (1,2,3-cd) pyrene	58.6 / 35.6	45-133		J/UJ	+
	Pyrene	1.96 / 301	35-142	NFG	J/R	1609326-005
LCS/LCSD LCS-41091	<u>8270D</u>	<u>%R</u> Acceptable	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
ICAL (9/12/16 6:32)		RRF Acceptable	<u>%RSD</u> Acceptable	Corr. Coeff.	<u>Qualifiers</u>	Associated Samples
CCV	8270D	RRF	%D		Qualifiers	Associated Samples
CCV S7 092316		Acceptable	Acceptable			
CCVE S7 092216	Bis(2-ethylhexyl)phthalate	Acceptable	55.80%		J/UJ	1609326-001 through 1609326-003, 1609326-005 through 1609326-010 & 1609326-012, 14 through 1609326-18
	Butyl benzyl phthalate	Acceptable	59.80%		J/UJ	1
	Hexachlorocylcopentadiene	Acceptable	91.10%		J/UJ	Ļ
	Hexachloroethane	Acceptable	64.20%		J\NJ	1609326-001 through 1609326-003, 1609326-005 through 1609326-010 & 1609326-012, 14 through 1609326-18
CCVE S7 092616	Atrazine	Acceptable	-39.0%		J/UJ	1609326-014 & 1609326-018
Tune		Acceptable				

Internal Standards	Areas	ICAL Midpoint Standard	<u>20% / 50%</u> - <u>ICAL</u> <u>Midpoint</u>	<u>Qualifiers</u>	Associated Samples
Perylene-d12	340,675 - 737,145	1,635,094	327,018 / 817,547	J+ / UJ	1609326-001 through -003 1609326-006 through -010, -012 1609326-014 through -018

Precision:

Are the field duplicate relative percent differences (RPD) ≤100%? Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? Comments (note deviations):

F D	ield)uplicates	<u>6010B</u>	<u>Sample</u> SB-06-B	<u>Duplicate</u> SB-906-B	<u>%RPD</u> Acceptable	<u>Qualifiers</u>	Associated Samples	
L	CS/LCSD I/A	<u>6010B</u>	<u>%RPD</u>	<u>Limits</u>		Qualifiers	Associated Samples	
N 1	IS/MSD 609326-005FMS / MSD	<u>6010B</u> Barium Calcium Iron	<u>%RPD</u> 20.6% 26.6% 20.1%	<u>Limit</u> 20% 20% 20%		<u>Qualifiers</u> J/UJ J/UJ J/UJ	<u>Associated Samples</u> All samples All samples All samples	
L D N	aboratory puplicate I/A	<u>Sample</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples	
Accurac Were se Was mar Was labo Was labo Was labo Were IC Were IC Was the Was the Was the Was the Commos	ey: rial dilutions analyzed and within of trix spike criteria met (frequency 2 st digestion spike criteria met (if a oratory control sample criteria me oratory blank criteria met (within of V/CCV % recoveries within 90-11 e Detection Limit CRQL Standard %D on form 16-IN for the initial of SA/ICSAB % recoveries acceptat tune %RPD <5% (Peak width < 0 ernal standard criteria met? bts (acto dovintions);	control limits of ±10% for waters (20% and % recovery 75-125%)? pplicable)? t? control limits)? 0%? s within 70-130? alibration instrument response an ole or within CRQL criteria? 0.75)?	± for 15% for so	oils) or initial s n data <30%?	ample result	less than 50x	MDL?	Yes No N/A Yes No Yes No Yes Yes N/A N/A N/A N/A

Serial Dilution	Analyte	<u>Initial Sample</u> <u>Result</u>	<u>%D</u> Acceptable	<u>50 x MDL</u>	<u>Qualifier</u>	Associated Samples
Blanks MB-40990	<u>6010B</u> Calcium Iron	Concentration 4800 3700		<u>DL / LOQ</u> 2100 / 36000 22000/ 11000	<u>Qualifiers</u> None None	<u>Associated Samples</u> Sample result > LOQ Sample result > LOQ
<u>ICB</u>	<u>Result</u> Nondetect		<u>DL / LOQ</u>	<u>Qualifier</u>	<u>Associ</u>	ated Samples
** Numerous CCBs we	re performed results associated with	each of the CCBs	were nond	etect.		
<u>CCBs</u>	Result Nondetect		<u>DL/LOQ</u>	<u>Qualifier</u>	<u>Associ</u>	ated Samples
Field Blank N/A	<u>6010B</u>	<u>Concentration</u> (ug/L)	<u>DL / LOQ</u>		<u>Qualifiers</u>	Associated Samples
ICSA/AB	Analyte - Solution A	<u>%R</u>	Found Sol <u>A / True A</u>	<u>.</u> <u>CRQL</u>	<u>Qualifiers</u>	Associated Samples

MS/MSD	<u>6010B</u>	<u>%R</u>	Limits (%)	<u>Post</u> Digestion Spike	Qualifiers	Associated Samples
1609326-005FMS / MSD	Aluminum	4560 / -1780%	75-125		None	Sample result 4xs the spike added
	Barium	136 / 31.8%	75-125	80%	None	Sample result 4xs the spike added
	Calcium	282 / -417	75-125	94%	None	Sample result 4xs the spike added
	Copper	160 /85	75-125	105%	J	All samples
	Iron	1680 / 60	75-125		None	Sample result 4xs the spike added
	Magnesium	571/87	75-125	94%	J	All samples
	Lead	103 / 63.1	75-125	83%	None	Sample result 4xs the spike added
	Manganese	347 / 29	75-125	95%	None	Sample result 4xs the spike added
	Potasium	263 / 291	75-125	94%	None	Sample result 4xs the spike added
	Selenium	72 /74	75-125	76%	J/UJ	All samples
	Sodium	90.9 / 67	75-125	92%	J/UJ	All samples
	Thallium	56.3 / 63	75-125	64%	J-/UJ	All samples
	Vanadium	94.2 / 74.9	75-125	96%	J/UJ	All samples
	Zinc	187 / 98.5	75-125	77%	J	All samples
LCS/LCSD LCS-40990	<u>6010B</u>	<u>%R</u> Acceptable	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
ICV/CCV	<u>Analyte</u> Acceptable	<u>%R</u>	<u>Limits</u>		<u>Qualifier</u>	Associated Samples
CRQL Standard	Analyte	<u>%R</u> Acceptable	<u>Limits</u>		Qualifier	Associated Samples

Polychlorinated Biphenyls 8082A

Precision:

Are the field duplicate relative percent differences (RPD) ≤100%? Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? Comments (note deviations):

Field Duplicates	<u>8082A</u>	Sample (ug/L) SB-06-B ND	Duplicate (ug/L) SB-906-B ND	<u>%RPD</u>	<u>Qualifiers</u>	Associated Samples
LCS/LCSD N/A	<u>8082A</u>	<u>%RPD</u>	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD 1609326-005F MS / MSD	<u>8082A</u>	<u>%RPD</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	LOQ	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples

Accuracy:

Accuracy:	Yes No N/A
Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency ≥ 5% and laboratory determined control limits)	Yes
Laboratory Control Sample criteria met?	Yes
Were the Laboratory Method Blank results all < RL?	Yes
Were the Field Blanks results all < RL?	N/A
Was the ICAL criteria met?	Yes
Was the CCV criteria met?	Yes
Were the Surrogate % recoveries within laboratory determined control limits?	Yes
Was the percent difference between the columns less than 25% for detected sample results?	Yes

Blanks MB-41258	<u>8082A</u>	Concentration Nondetect	MDL/RL		<u>Qualifiers</u>	Associated Samples
Field Blank N/A	<u>8082A</u>	<u>Concentration</u> (ug/L)	<u>MDL / RL</u>		<u>Qualifiers</u>	Associated Samples
Surrogates	<u>8082A</u>	<u>%R</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD 1609326-005F MS / MSD	<u>8082A</u>	<u>%R</u> Acceptable	<u>Limits (%)</u>		<u>Qualifiers</u>	Associated Samples
LCS/LCSD LCS-41258	<u>8082A</u>	<u>%R</u> Acceptable	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
Target Compound Identification	<u>8082A</u>	<u>RPD <25%</u>	RPD Acceptable		<u>Qualifiers</u>	Associated Samples
ICAL	<u>8082A</u>	<u>RRF</u> Acceptable	<u>%RSD</u>	Corr. Coeff.	Qualifiers	Associated Samples

ccv	<u>8082A</u>	<u>RRF</u> A	<u>%D</u> .cceptable	<u>Qualifiers</u>	Associated Samples
Internal Standard	ls	Area	<u>Area</u> Lower / Upper	<u>Qualifiers</u>	Associated Samples
N/A	<u>8082A</u>		Limit		

Precision:

Are the field duplicate relative percent differences (RPD) $\leq 100\%$? Were the Matrix Spike Duplicate RPDs $\leq 20\%$? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? <u>Comments (note deviations)</u>:

				Duplicate			
	Field	<u>8015B</u>	Sample (ug/L)	<u>(ug/L)</u>	<u>%RPD</u>	Qualifiers	Associated Samples
	Duplicates		SB-06-B	SB-906-B			
					Acceptable		
	LCS/LCSD	<u>8015B</u>	<u>%RPD</u>	Limits		Qualifiers	Associated Samples
	N/A						
		<u>8015B</u>					
	MS/MSD		<u>%RPD</u>	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
	1609326-005CMS / MSD	GRO	Acceptable				
	1609326-005EMS / MSD	DRO	63.5%	20%		J	SB-01-A
		550	00.40%	200/			
	1609326-021EMS / MSD	DRO	20.10%	20%		J	SB-10-B
		0	Dullarta			0	
	Laboratory	Sample	Duplicate	DL/LOQ	<u>%RPD</u>	Qualifier	Associated Samples
	N/A						
	racy:						Yes No N/A
100u	acy.						ICS NU N/A

Accuracy.	TES NO N/A
Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency ≥ 5% and laboratory determined control limits)	No
Laboratory Control Sample criteria met?	Yes
Were the Laboratory Method Blank results all < RL?	No
Were the Field Blanks results all < RL?	N/A
Were the Surrogate % recoveries within laboratory determined control limits?	No

Blanks VOA8 MBLK-091516	8015B GRO	Concentration 1,100	<u>DL / LOQ</u> 1300 / 2000	<u>Qualifiers</u> RL U	<u>Associated Samples</u> 1609326-001 through 1609326-008
VOA8 MBLK2-091516	GRO	1,400	1300 / 2000	RL U	1609326-011 through 1609326- 013, 1609326-015 through 1609326-017 & 1609326-019 through 1609326-021
MB-41077 MB-41078		Nondetect Nondetect			
Field Blank N/A	<u>8015B</u>	Concentration (ug/L) DL / LOQ		<u>Qualifiers</u>	Associated Samples

Surrogates		8015B	%R	Limit		Qualifiers	Associated Sample	es
	GRO	1.2-Dichlorobenzene-d4	190%	70-130			SB-07-A	
	0.10	.,	10070			•	•= •	
	DRO	n-Ficosane	54%	60-130		J- / UJ	SB-906-B	
			52%	60-130		J- / UJ	SB-10-A	
			47%	60-130		J- / UJ	SB-01-A	
			45%	60-130		J- / UJ	SB-07-B	
			59%	60-130		J- / UJ	SB-11-B	
			58%	60-130		.l- / U.l	SB-05-B	
			34%	60-130		.l- / U.I	SB-07-A	
			59.7%	60-130		.1- / 11.1	SB-09-4	
			00.1 /0	00.100		0,00	02 00 / 1	
	DRO) Squalene	229%	60-130		J+	SB-01-A	
	2.10	- quality -	169%	60-130		J+	SB-04-A	
			174%	60-130		.1+	SB-11-A	
			297%	60-130		.l+	SB-07-A	
			0%	60-130		J-/R	SB-09-A	
			0,0			• • •	•= •• ··	
MS/MSD		<u>8015B</u>	<u>%R</u>	Limits (%)		Qualifiers	Associated Sample	es
1000000 0050M0 (MOD			Accentable					
1609326-005CMS / MSD		GRU	Acceptable					
1600326 005EM6 / MCD			100/021	20 122		1411	CD 04 A	
1609326-005EMS/MSD		DRO	10.0 / 03.1	30-132		J/UJ	5B-01-A	
1600226 021EM6 / M6D			Accontable					
1609326-021EMS7 MSD			Acceptable					
LCS/LCSD		8015B	%R	Limits		Qualifiers	Associated Sample	95
VOA8 LCS 091516		<u></u>	Acceptable			quamore	/ loooolatou oumpr	
LCS-41077			Accentable					
203-41078			Acceptable					
		8015B	RRF	%RSD	Corr Coeff	Qualifiers	Associated Sample	96
(5/26/16 8:50)		00100	<u>Inn</u>	Acceptable	<u></u>	quainers	Associated campi	
(0,20,10 0.00)				/1000ptuble				
CCV		8260		RRF	%D	Qualifiers	Associated Sample	es
					Acceptable			
					·			
Representativeness:								Yes No N/A
Were sampling procedures and de	esign cri	iteria met?					-	Yes
Were holding times met?								Yes
Was preservation criteria met? (0°	° - 6° C)	1						Yes
Were Chain-of-Custody records co	omplete	and provided in data package	e?					Yes
Comments (note deviations): Coc	ler tem	peratures were 2.0, 3.4 & 4.4	<u>4°С.</u>					
Holding Times		<u>Days to Analysis</u>	HT Criteria		<u>Qualifier</u>	<u>Associ</u>	ated Samples	
			Acceptable					
Comparability								Ves No N/A
Were analytical procedures and m	ethode	followed as defined in the OA	PP or field change	documentat	ion?		-	Vas
Comments (note deviations):	ictitous			documentat				163
Completeness (90%):								Yes No N/A
Are all data in this SDG usable?							-	Yes
Comments (note deviations):								
Sensitivity:							-	Yes No N/A
Are MDLs present and reported?							-	Yes
Do the reporting limits meet project	ct requir	ements?						Yes
Comments (note deviations):								
Overall Commenter All data and	ucoble	with appropriate qualifiers	lind					
overall comments: All data are	usable	with appropriate qualifiers app	med.					
Data Validator:		Kristine Mal	lov	Date:	3/1/2017			
Data Reviewer:		Cherie Zako	wskí	Date:	3/3/2017			
-								

77 Westchester Avenue, Pound Ridge/Scotts Corners Site Pound Ridge, New York Data Validation Report

Sample Delivery Group (SDG) Number:	1609334			
_aboratory:	RTI Laboratories			
Matrix:	Groundwater			
Collection date:	09/09/16			
Analysis/Methods:				
	Malatila Onnania Osmanda			

Volatile Organic Compounds 8260A Semivolatile Organic Compounds 8270A Metals (ICP - MS) 6020A Petroleum Hydrocarbons (DRO) / Nonhalogentated Organics (GRO) SW8015D Polychlorinated Biphenyls (PCBs) 8082A

Samples in SDG:

1609334-001	MW-1-A
1609334-002	MW-91-A
1609334-003	RB-01
1609334-004	RB-02
1609334-005	GW-01-A
1609334-006	GW-05-A
1609334-007	TB-01

Data validation was performed in accordance with the specific analytical methods and the U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (September 2016) and the U.S. EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (September 2016).

Volatile Organic Compounds 8260C

Precision:	Yes No N/A
Are the field duplicate relative percent differences (RPD) ≤50%?	Yes
Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits)	No
Laboratory Control Spike Duplicates RPD within limits?	No

Comments (note deviations):

1609458-010AMSD

Field Duplicates	<u>8260C</u>	<u>Sample</u> MW-1-A	Duplicate MW-91-A	<u>%RPD</u> Acceptable	<u>Qualifiers</u>	Associated Samples
LCS/LCSD VOA11B LCS / LCSD 091616	8260C 1,2,3-Trichlorobenzene	<u>%RPD</u> 28%	<u>Limits</u> 25%		<u>Qualifiers</u> J/UJ	Associated Samples 1609334-001 & 1609334-002
 MS/MSD 1609334-001A	8260C Bromomethane	<u>%RPD</u> 34%	<u>Limit</u> 25%		<u>Qualifiers</u> J / UJ	Associated Samples 1609334-001B

** Several MS/MSD RPDs were outside of acceptable criteria; however per the NFGs in the case of the organics qualification should be applied to the original sample results. The original sample is not assocaited with this SDG; therefore no qualification was required.

Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples	<u>></u>

Accuracy:	Yes No N/A
Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency ≥ 5% and laboratory determined control limits)	No
Laboratory Control Sample criteria met?	No
Were the Laboratory Method Blank results all < RL?	No
Were the Field Blanks results all < RL?	No
Was the ICAL criteria met?	Yes
Was the CCV criteria met?	No
Was the Tuning criteria met?	Yes
Were the Surrogate % recoveries within laboratory determined control limits?	Yes
Were the Internal Standard areas within ± 50 - 150%?	Yes
Comments (note deviations):	

Blanks	<u>8260C</u>	Concentration	<u>DL/LOQ</u>		<u>Qualifiers</u>	Associated Samples
VOATIB MBLK 091516	Acetone	15	0 56 / 10		RL U	GW-01-A
	Methylene Chloride	0.49	0.27 / 5.0		None	Sample results nondetect
VOA11B MBLK 091616	Acetone	1 9	0.56 / 10		RI II	MW-1-6 & MW-91-6
VOATTE MEER 00 TO TO	Methylene Chloride	0.48	0.27 / 5.0		None	Sample results nondetect
	, , , , , , , , , , , , , , , , , , ,					•
		Concentration				
Field Blank	8260C	(ug/L)	DL/LOQ		<u>Qualifiers</u>	Associated Samples
RB-01	2-Butanone	3.1	2.3 / 10		None	Sample results nondetect
	Acetone	16	0.56 / 10		RL U	GW-01-A MW-1-A & MW-91-A
PP 02	2 Putanono	2.4	23/10		Nono	Sample results pendetect
ND-02	Acetone	2.4 14	0.56 / 10		RLU	GW-01-A MW-1-A & MW-91-A
	Methylene Chloride	0.29	0.27 / 5.0		None	Sample results nondetect
TD 04			0.0.1.10			
IB-01	2-Butanone	2.5	2.3 / 10		None	Sample results nondetect
	Chloromethane	0.82	0.37/10		RLU	MW-1-A & MW-91-A
	Methylene Chloride	0.34	0.27 / 5.0		None	Sample results nondetect
Surrogates	8260C	%R	Limit		Qualifiers	Associated Samples
Currogatoo	02000	Acceptable	<u></u>		duumoro	<u></u>
MS/MSD	<u>8260C</u>	<u>%R</u>	Limits (%)		Qualifiers	Associated Samples
1609334-001A	1,1,2-Trichloro-1,2,2-	154 / 153%	70-136		J **	MW-1-A
	Bromomethane	44 2 / 62 5%	53-141		.171.1	MW-1-A
	Napthalene	58.6 / 63.2%	61-128		J/UJ	MW-1-A
	·			** No qualifica	ation require	ed as results are nondetect
1609458-010AMSD	and Several MS/MSD reco qualification should be a therefore no qualification	veries were outside oplied to the original was required.	sample results	criteria; nowever s. The original s	ample is not	associated with this project;
LCS/LCSD	<u>8260C</u>	<u>%R</u>	<u>Limits</u>		Qualifiers	Associated Samples
VOA11B LCS / LCSD 09156	1,1,2-Trichloro-1,2,2-	128 / 141%	70-136		J**	GW-01-A & GW-05-A
	trifluoroetnane o-xylene	745/772	78-122		.171.1	GW-01-A & GW-05-A
	Styrene	76.1 / 78.8	78-123		J/UJ	GW-01-A & GW-05-A
VOA11B LCS / LCSD 091616	1,1,2-Trichloro-1,2,2- trifluoroethane	150 / 140	70-136		J**	MW-1-A & MW-91-A
	o-xylene	77.6 / 76.1	78-122		J/UJ	MW-1-A & MW-91-A
				** No qualifica	ation require	ed as results are nondetect
ICAL (9/14/16 1:35)	<u>8260C</u>	<u>RRF</u>	<u>%RSD</u> Acceptable	Corr. Coeff.	<u>Qualifiers</u>	Associated Samples
CCV VOA11B CCV091516	8260C 1,1,2-trichloro-1,2,2-triflu	oroethane	RRF Acceptable	<u>%D</u> 28.40%	<u>Qualifiers</u> J/UJ	Associated Samples GW-01-A & GW-05-A
			-			
VOA11B CCV091516	1,1,2-trichloro-1,2,2-triflu	oroethane	Acceptable	33.80%	J/UJ	MW-1-A & MW-91-A
Tune	8260C Acceptable					
Internal Standards	8260C Acceptable				Qualifiers	Associated Samples
Semivolatile Organic Compounds 8270D

Precision:

Are the field duplicate relative percent differences (RPD) \leq 50%? Were the Matrix Spike Duplicate RPDs \leq 20%? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? <u>Comments (note deviations)</u>:

			Dallasta		0 11/1	
Field Duplicates	<u>8270D</u>	<u>Sample</u> MW-1-A	Duplicate MW-91-A	<u>%RPD</u>	Qualifiers	Associated Samples
	Chrysene	0.044	0.41	NC **	None	ABS difference < 5xs I 00
	Dibenz (a,h) anthracene	0.037	0.075	NC **	None	ABS difference < 5xs LOQ
	Benzo (k) fluoranthene	0.13	0.14	NC **	None	ABS difference < 5xs LOQ
	Benzo (g,h,l) perylene	0.052	0.28	NC **	None	ABS difference < 5xs LOQ
	Benzo (b) fluoranthene	0.082	0.52	NC **	None	ABS difference < 5xs LOQ
	Benzo (a) pyrene	0.060	0.34	NC **	None	ABS difference < 5xs LOQ
	Fluoranthene	0.051	0.78	NC **	None	ABS difference < 5xs LOQ
	Indeno (1,2,3-cd) pyrene	0.055	0.24	NC **	None	ABS difference < 5xs LOQ
	Benzo (a) anthracene	0.065	0.28	NC **	None	ABS difference < 5xs LOQ
	Pyrene	0.058	0.68	NC **	None	ABS difference < 5xs LOQ
		** %RPD not calcu	ilated - sample re	esults were ND i	in sample MW	/-1-A
LCS/LCSD N/A	<u>8270D</u>	<u>%RPD</u>	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD	<u>8270D</u>	<u>%RPD</u>	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
1609334-001CMS	N-Nitrosodinhenvlamine	30%	25%		1**	M)A/ 1 A
	14 Hurosouphenylanine	50 /0	2070	** No qualific	ation require	ed as results are nondetect
	0 amerila	Dunlingto		*	Qualifian	Associated Osmulas
Duplicate N/A	<u>Sample</u>	Duplicate	<u>DL7 LOQ</u>	<u>%RPD</u>	Quaimer	Associated Samples
Accuracy: Was the Matrix Spike/Matrix Spike Dup Laboratory Control Sample criteria met Were the Laboratory Method Blank res Were the Field Blanks results all < RL? Was the ICAL criteria met? Was the CCV criteria met? Was the Tuning criteria met? Were the Surrogate % recoveries withi Were the Internal Standard areas withi Comments (note deviations):	olicate criteria met? (frequenc) t? sults all < RL? ? in laboratory determined contr in ± 50 - 150%?	y ≥ 5% and labora ol limits?	tory determined	control limits)		Yes No N/A No Yes N/A Yes No Yes Yes Yes
Blanks MB-40993	<u>8270D</u>	Concentration Nondetect		<u>DL / LOQ</u>	<u>Qualifiers</u>	Associated Samples
Field Blank RB-01	<u>8270D</u>	Concentration (ug/L) Nondetect	<u>DL/LOQ</u>		<u>Qualifiers</u>	Associated Samples
RB-01	Naphthalene	0.1	0.097 / 0.20		None	Sample results nondetect
Surrogates	<u>8270D</u> Phenol-d5	<u>%R</u> 26.2% 22.8%	<u>Limit</u> 30-130 30-130		<u>Qualifiers</u> J- / UJ* J- / UJ*	<u>Associated Samples</u> MW-1-A MW-91-A

*Benzaldehyde and phenol qualified

MS/MSD	<u>8270D</u>	<u>%R</u>	<u>Limits (%)</u>	Qualifiers	Associated Samples
1609334-001CMS	1,1-Biphenyl	0/0%	50-130	J/R	MW-1-A
	3,3-Dichlorobenzidine	0/0%	27-129	J/R	MW-1-A
	4,6-Dinitro-2- methylphenol Atrazine	143/143% 0/0%	44-137 44-142	J** J / R	MW-1-A MW-1-A
	N-Nitrosodiphenylamine	53/38%	51-123	J / UJ	MW-1-A
				** No qualification require	ed as results are nondetect
LCS/LCSD LCS-40993	8270D Capractolam	<u>%R</u> 0%	Limits 50-130	<u>Qualifiers</u> J/R	Associated Samples MW-1-A & MW-91-A
	Atrazine	26.90%	44-142	J/UJ	MW-1-A & MW-91-A
ICAL (9/12/16 6:32)		<u>RRF</u>	<u>%RSD</u> Acceptable	Corr. Coeff. Qualifiers	Associated Samples
CCV CCV S7091416	<u>8270D</u> Atrazine	<u>RRF</u> Acceptable	<u>%D</u> -38.0%	<u>Qualifiers</u> J/UJ	Associated Samples MW-1-A & MW-91-A
 Tune Acceptable					
 Internal Standards		Area Acceptable	<u>Area Lower /</u>	Qualifiers	Associated Samples

Precision:

Are the field duplicate relative percent differences (RPD) ≤50%? Were the Matrix Spike Duplicate RPDs $\leq 20\%$? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? Comments (note deviations)

N/A

N/A

100
N/A

Field Duplicates	<u>6010B</u>	<u>Sample</u> MW-1-A	Duplicate MW-91-A	<u>%RPD</u>	<u>Qualifiers</u>	Associated Sample	<u>es</u>
	Aluminum	330	720	74%	None	ABS difference < 5x	s LOQ
	Iron	2,200	5,100	79%	J	MW-1-A & MW-91-	4
	Zinc	38	13	98%	None	ABS difference < 5x	s LOQ
LCS/LCSD N/A	<u>6010B</u>	<u>%RPD</u>	<u>Limits</u>		<u>Qualifiers</u>	Associated Sample	<u>es</u>
MS/MSD 1609334-001FMS / MSD	<u>6010B</u>	<u>%RPD</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Sample	<u>es</u>
Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Sample	<u>95</u>
Accuracy:							Yes No N/A
Were serial dilutions analyzed and wit	hin control limits of ±10% fo	r waters (± for 15% f	or soils) or initial	sample result	less than 50x	MDL?	Yes
Was matrix spike criteria met (frequen	cy 20% and % recovery 75-	-125%)?					No
Was post digestion spike criteria met	(if applicable)?						Yes
Was laboratory control sample criteria	met?						Yes
Was laboratory blank criteria met (with	nin control limits)?						No
Were ICV/CCV % recoveries within 90)-110%?						Yes
Were the Detection Limit CRQL Stand	lards within 70-130?						Yes
Was the %D on form 16-IN for the init	al calibration instrument res	ponse and concentra	ation data <30%?	•			N/A
Were ICSA/ICSAB % recoveries acce	ptable or within CRQL criter	ia?					Yes

Was the tune %RPD <5% (Peak width < 0.75)?

Was internal standard criteria met?

Comments (note deviations):

Serial Dilution	<u>Analyte</u>	Initial Sample Result	<u>%D</u> Acceptable	<u>50 x MDL</u>	<u>Qualifier</u>	Associated Samples
Blanks MB-40997 MB-40998	<u>6010B</u> Aluminum	Concentration 4.9 Nondetect		<u>DL / LOQ</u> 0.38 / 100	<u>Qualifiers</u> None	Associated Samples Sample result nondetect
<u>ICB</u>	<u>Result</u> Nondetect		<u>DL / LOQ</u>	Qualifier	Associ	ated Samples
** Numerous CCBs were perform	med results associated w	ith each of the CCI	Bs were nonde	tect.		
<u>CCBs</u>	<u>Result</u> Nondetect		<u>DL / LOQ</u>	<u>Qualifier</u>	<u>Associ</u>	ated Samples

Field Blank RB-01	6010B Aluminum Chromium Copper Iron Manganese Nickel Zinc Antimony	Concentration (ug/L) 6.1 0.62 1 110 1.5 6.7 9.6 0.28	DL / LOQ 2.8 / 100 0.61 / 20 0.49 / 10 95 / 400 0.53 / 10 0.41 / 20 3.5 / 100 0.19/2.5		Qualifiers None 20 U 10 U None 20 U 100 U 2.5 U	Associated Samples Sample results > LOQ MW-1-A & MW-91-A MW-1-A & MW-91-A Sample results > LOQ Sample results > LOQ MW-1-A & MW-91-A MW-1-A
RB-02	Aluminum Manganese Nickel Zinc	6.5 0.57 6.4 15	2.8 / 100 0.53 / 10 0.41 / 20 3.5 / 100		None None 20 U 100 U	Sample results > LOQ Sample results > LOQ MW-1-A & MW-91-A MW-1-A & MW-91-A
ICSA/AB	Analyte - Solution A	<u>%R</u> Acceptable	Found Sol. A / <u>True A</u>	<u>CRQL</u>	<u>Qualifiers</u>	Associated Samples
MS/MSD	<u>6010B</u>	<u>%R</u>	<u>Limits (%)</u>	<u>Post</u> Digestion Spike	<u>Qualifiers</u>	Associated Samples
1609334-001FMS / MSD	Aluminum Sodium	120 / 136% 33.4 / -11.7%	75-125 75-125	79%	J None	All samples Sample result 4xs the spike added
LCS/LCSD LCS-40997 LCS-40998	<u>6010B</u>	<u>%R</u> Acceptable Acceptable	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
	Analyte Acceptable	<u>%R</u>	Limits	Qualifier	Associa	ated Samples
CRQL Standard	Analyte	<u>%R</u> Acceptable	Limits		Qualifier	Associated Samples

Polychlorinated Biphenyls 8082A

Precision:

Are the field duplicate relative percent differences (RPD) ≤50%? Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? Comments (note deviations)

Field Duplicates	<u>8082A</u>	<u>Sample (ug/L)</u> MW-1-A	<u>Duplicate</u> (ug/L) MW-91-A	<u>%RPD</u> Acceptable	<u>Qualifiers</u>	Associated Samples
LCS/LCSD N/A	<u>8082A</u>	<u>%RPD</u>	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD 1609334-001EMS / MSD	<u>8082A</u>	<u>%RPD</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	LOQ	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples

Accuracy:	Yes No N/A
Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency ≥ 5% and laboratory determined control limits)	Yes
Laboratory Control Sample criteria met?	Yes
Were the Laboratory Method Blank results all < RL?	Yes
Were the Field Blanks results all < RL?	Yes
Was the ICAL criteria met?	Yes
Was the CCV criteria met?	No
Were the Surrogate % recoveries within laboratory determined control limits?	Yes
Was the percent difference between the columns less than 25% for detected sample results?	No

Comments (note deviations):

Blanks MB-41155	<u>8082A</u>	Concentration Nondetect	<u>MDL/RL</u>	<u>Qualifiers</u>	Associated Samples
Field Blank RB-01 RB-02	<u>8082A</u>	Concentration (ug/L) Nondetect Nondetect	MDL/RL	<u>Qualifiers</u>	Associated Samples
 Surrogates	<u>8082A</u>	<u>%R</u> Acceptable	Limit	<u>Qualifiers</u>	Associated Samples
 MS/MSD 1609334-001EMS / MSD	<u>8082A</u>	<u>%R</u> Acceptable	<u>Limits (%)</u>	<u>Qualifiers</u>	Associated Samples
 LCS/LCSD LCS-41155	<u>8082A</u>	<u>%R</u> Acceptable	Limits	<u>Qualifiers</u>	Associated Samples
Target Compound Identification	8082A Total PCBs	<u>RPD <25%</u> 71.5%	<u>RPD</u>	Qualifiers RC U	Associated Samples MW-91-A

ICAL (6/6/2016 3:46)	<u>8082A</u>	<u>RRF</u> Acceptable	<u>%RSD</u>	<u>Corr. Coeff.</u>	<u>Qualifiers</u>	Associated Samples
CCV CCV093016E1A	8082A Aroclor 1260	<u>RRF</u>	<u>%D</u> 77.1%		<u>Qualifiers</u> J/UJ	Associated Samples MW-1-A & MW-91-A
Internal Standards	<u>8082A</u>	<u>Area</u> Acceptable	<u>Area Lower /</u> <u>Upper Limit</u>		<u>Qualifiers</u>	Associated Samples

Petroleum Hydrocarbons (DRO) / Nonhalogenated Organics (GRO) SW8015B

Precision:

LCS-41035

Are the field duplicate relative percent differences (RPD) ≤50%? Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? <u>Comments (note deviations)</u>:

Field Duplicates	<u>8015B</u>	<u>Sample (ug/L)</u> MW-1-A	<u>Duplicate</u> (ug/L) MW-91-A	<u>%RPD</u>	<u>Qualifiers</u>	Associated Samples	
	Diesel Range Organics (DR	160	270	51%	None	ABS difference < 5xs LO	Q
	Gasoline Range Organics (G	RO)		Acceptable			
LCS/LCSD N/A	<u>8015B</u>	<u>%RPD</u>	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples	
MS/MSD 1609334-001B	<u>8015B</u>	<u>%RPD</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples	
Laboratory Duplicate N/A	<u>Sample_</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples	
Accuracy: Was the Matrix Spike/Matrix Spike Du Laboratory Control Sample criteria me Were the Laboratory Method Blank res Were the Field Blanks results all < RL' Were the Surrogate % recoveries with Comments (note deviations):	plicate criteria met? (frequency t? sults all < RL? ? in laboratory determined contro	≥ 5% and laborate	ory determined	control limits)		<u>Yes</u>	S NO N/A Yes Yes No No Yes
Blanks VOA8 MBLK-091316	<u>8015B</u> GRO	Concentration 19		<u>DL / LOQ</u> 15 / 100	<u>Qualifiers</u> RL U	Associated Samples GW-01-A	
MB-41035		Nondetect					
Field Blank RB-01	<u>8015B</u> GRO DRO	Concentration (ug/L) 23 64	DL/LOQ 15/100 14/200		Qualifiers RL U RL U	Associated Samples GW-01-A MW-01-A	
RB-02	GRO DRO	23 50	15 / 100 14 / 200		RL U RL U	GW-01-A MW-01-A	
Surrogates	<u>8015B</u> Squalene	<u>%R</u> 135%	<u>Limit</u> 48-125%		<u>Qualifiers</u> J	<u>Associated Samples</u> MW-91-A	
MS/MSD	<u>8015B</u>	<u>%R</u>	Limits (%)		Qualifiers	Associated Samples	
1609334-001BMS / MSD 1609334-001DMS / MSD		Acceptable Acceptable					
LCS/LCSD VOA8 LCS 091316	<u>8015B</u>	<u>%R</u> Acceptable	<u>Limits</u>		Qualifiers	Associated Samples	

ICAL (6/6/16 (9/1/16	9:04) 10:20)	<u>8015B</u>	<u>RRF</u>	<u>%RSD</u> Acceptable Acceptable	<u>Corr. Coeff.</u>	<u>Qualifiers</u>	Associated Sampl	<u>es</u>		
CCV (9/1/16	10:20)	<u>8260</u>		<u>RRF</u>	<u>%D</u> Acceptable	<u>Qualifiers</u>	Associated Sampl	<u>es</u>		
Representative Were sampling Were holding ti Was preservati Were Chain-of- <u>Comments (not</u>	Representativeness: Were sampling procedures and design criteria met? Nere holding times met? Was preservation criteria met? (0° - 6° C) Was preservation criteria met? (0° - 6° C) Were Chain-of-Custody records complete and provided in data package? Comments (note deviations): Cooler temperatures were 4.2, 4.7. 4.9 & 5.6° C .									
Holding	j Times	Days to Analysis	HT Criteria Acceptable		<u>Qualifier</u>	Associ	ated Samples			
Comparability Were analytical Comments (not	: I procedures and m te deviations):	ethods followed as defined in the C	APP or field cha	nge documentat	ion?			Yes No N/A Yes		
Completeness Are all data in t Comments (not	s (90%): his SDG usable? te deviations):							Yes No N/A No		
Sensitivity: Are MDLs pres Do the reporting Comments (not	ent and reported? g limits meet projec te deviations):	t requirements?						Yes No N/A Yes Yes		
Overall Comm	ents: All data are	usable with appropriate qualifiers a	pplied.	Dete	. 0/07/0/17					
Data Validator: Data Reviewer:	:	Cherie Zako	wskí	Date	3/1/2017					

77 Westchester Avenue, Pound Ridge/Scotts Corners Site Pound Ridge, New York **Data Validation Report**

Sample Delivery Group (SDG) Number: Laboratory: Matrix: Collection date: Analysis/Methods:

1609377 **RTI** Laboratories

Groundwater 09/12/16

Volatile Organic Compounds 8260C Semivolatile Organic Compounds 8270A Metals (ICP - MS) 6020A Petroleum Hydrocarbons (DRO) / Nonhalogentated Organics (GRO) SW8015D

Samples in SDG:

1609377-001	GW-05-B
1609377-002	GW-09-A
1609377-003	MW-2-A
1609377-004	GW-11-A
1609377-005	PW-01-A
1609377-006	TB-02

Data validation was performed in accordance with the specific analytical methods and the U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (September 2016) and the U.S. EPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (September 2016).

Volatile Organic Compounds 8260C

Precision:	Yes No N/A
Are the field duplicate relative percent differences (RPD) ≤50%?	N/A
Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits)	No
Laboratory Control Spike Duplicates RPD within limits?	No
Comments (note deviations):	

Field Duplicates N/A	<u>8260C</u>	<u>Sample</u>	<u>Duplicate</u>	<u>%RPD</u>	<u>Qualifiers</u>	Associated Samples
LCS/LCSD	<u>8260C</u>	<u>%RPD</u>	Limits		Qualifiers	Associated Samples
VOA11B LCS / LCSD 091616	1,2,3-Trichlorobenzene	28%	25%		J/UJ	GW-09-A, GW-11-A, MW-2A, PW- 01-A
MS/MSD 1609334-001MS / MSD	<u>8260C</u>	<u>%RPD</u>	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
	** Several MS/MSD RPDs should be applied to the ori- was required.	were outside of acc ginal sample result	ceptable criteria; h s. The original sa	nowever per th ample is not as	ne NFGs in the ssocaited with	e case of the organics, qualification this SDG; therefore no qualification
Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	<u>Qualifier</u>	Associated Samples
curacy:						Yes No N/A
as the Matrix Spike/Matrix Spike Dup	licate criteria met? (frequency	$\gamma \ge 5\%$ and laborat	ory determined co	ontrol limits)		No
are the Laboratory Method Blank res	: ults all < RL?					NO
ere the Field Blanks results all < RL?						NA
as the ICAL criteria met?						Yes

Was the CCV criteria met?

Was the Tuning criteria met?

Were the Surrogate % recoveries within laboratory determined control limits?

Were the Internal Standard areas within ± 50 - 150%?

Comments (note deviations):

No

Yes Yes

Yes

Blanks	<u>8260C</u>	Concentration	DL / LOQ		<u>Qualifiers</u>	Associated Samples
VOATTE MEEK US 10 10	Acetone Methylene Chloride	1.9 0.48	0.56 / 10 0.27 / 5.0		10 U None	GW-09-A, GW-11-A, PW-01-A Sample results nondetect
Field Blank		Concentration			Qualifiers	Associated Samples
	8260C	<u>(ug/L)</u>	DL/LOQ			
TB-02	2-Butanone	2.8	2.3 / 10		None	Sample results nondetect
	Acetone	13	0.56 / 10		10 0	GW-09-A, GW-11-A, PW-01-A
	Methylene Chloride	0.85	0.27 / 5.0		None	Sample results nondetect
Surrogates	<u>8260C</u>	<u>%R</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD	8260C ** Several MS/MSD recov qualification should be ap	<u>%R</u> eries were outside of blied to the original sa	Limits (%) acceptable criter ample results. No	ia; however p o qualification	Qualifiers per the NFGs i was required.	Associated Samples n the case of the organics
LCS/LCSD VOA11B LCS / LCSD 091616	8260C 1,1,2-Trichloro-1,2,2- trifluoroethane	<u>%R</u> 150 / 140%	<u>Limits</u> 70-136		<u>Qualifiers</u> J**	Associated Samples GW-09-A, GW-11-A, MW-2A, PW- 01-A
	o-xylene	77.6 /76.1	78-122		J/UJ	GW-09-A, GW-11-A, MW-2A, PW- 01-A
		** No qualification	n required as res	sults are nor	idetect	
ICAL (9/14/16 1:35)	<u>8260C</u>	RRF	%RSD Acceptable	<u>Corr.</u> Coeff.	Qualifiers	Associated Samples
CCV VOA11B CCV091616	8260C 1,1,2-trichloro-1,2,2-trifluo	roethane	<u>RRF</u> 33.80%	<u>%D</u>	<u>Qualifiers</u> J/UJ	<u>Associated Samples</u> GW-09-A, GW-11-A, MW-2A, PW- 01-A
Tune	8260C Acceptable					
Internal Standards	8260C Acceptable				<u>Qualifiers</u>	Associated Samples

Semivolatile Organic Compounds 8270D Precision: Yes No N/A Are the field duplicate relative percent differences (RPD) ≤50%? N/A Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits) Yes Laboratory Control Spike Duplicates RPD within limits? N/A Comments (note deviations): Field 8270D Sample **Duplicate** %RPD Qualifiers Associated Samples Duplicates N/A LCS/LCSD 8270D %RPD Limits **Associated Samples** Qualifiers N/A MS/MSD 8270D %RPD <u>Limit</u> Qualifiers Associated Samples 1609416-006MS Acceptable ** The RPD for 1,4-dioxane was outside of acceptable criteria; however per the NFGs in the case of the organics qualification should be applied to the original sample results. The original sample is not assocaited with this SDG; therefore no qualification was required. DL/LOQ Laboratory Sample Duplicate %RPD Qualifier **Associated Samples** Duplicate N/A Accuracy: Yes No N/A Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency \geq 5% and laboratory determined control limits) No Laboratory Control Sample criteria met? No Were the Laboratory Method Blank results all < RL? No Were the Field Blanks results all < RL? N/A Was the ICAL criteria met? Yes Was the CCV criteria met? No Was the Tuning criteria met? Yes Yes Were the Surrogate % recoveries within laboratory determined control limits? Were the Internal Standard areas within ± 50 - 150%? Yes Comments (note deviations): **Concentration** Blanks 8270D DL/LOQ Qualifiers Associated Samples MB-41006 Nondetect **Concentration Field Blank** Qualifiers Associated Samples 8270D <u>(ug/L)</u> DL/LOQ N/A Surrogates 8270D <u>%R</u> Limit Qualifiers **Associated Samples** Acceptable MS/MSD <u>8270D</u> <u>%R</u> Limits (%) **Associated Samples** Qualifiers 1609416-006MS ** Several MS/MSD recoveries were outside of acceptable criteria; however per the NFGs in the case of the organics qualification should be applied to the original sample results. The original sample is not associated with this SDG; therefore no

LCS/LCSD8270D%RLimitsQualifiersAssociated SamplesLCS-41006Atrazine23.40%44-142J/UJPW-01-A

qualification was required.

ICAL (9/12/16 6:32)		<u>RRF</u>	<u>%RSD</u> Acceptable	<u>Corr.</u> Coeff.	<u>Qualifiers</u>	Associated Samples
CCV CCV S8 091516	8270D Hexachlorocyclopentadiene	<u>RRF</u>	<mark>%D</mark> 54.3%		<u>Qualifiers</u> J/UJ	<u>Associated Samples</u> PW-01-A
CCV S8 091516	4,6-Dinitro-2-methylphenol Hexachlorocyclopentadiene		56.0% 66.9%		1/N1 1/N1	PW-01-A PW-01-A
Tune		Acceptable				
Internal Standards		<u>Area</u> Acceptable	<u>Area Lower /</u>		<u>Qualifiers</u>	Associated Samples

Metals 6020A

Are the field duplicate relative percent differences (RPD) ≤50%? Were the Matrix Spike Duplicate RPDs ≤ 20%? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? Comments (note deviations):

Field Duplicates N/A	<u>6020A</u>	<u>Sample</u>	<u>Duplicate</u>	<u>%RPD</u>	<u>Qualifiers</u>	Associated Samples
LCS/LCSD N/A	<u>6020A</u>	<u>%RPD</u>	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD 1609377-005CMS /MSD	<u>6020A</u>	<u>%RPD</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
Laboratory Duplicate N/A	Sample_	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	Qualifier	Associated Samples

Accuracy:

Accuracy:	Yes No N/A
Were serial dilutions analyzed and within control limits of ±10% for waters (± for 15% for soils) or initial sample result less than 50x MDL?	Yes
Was matrix spike criteria met (frequency 20% and % recovery 75-125%)?	Yes
Was post digestion spike criteria met (if applicable)?	Yes
Was laboratory control sample criteria met?	Yes
Was laboratory blank criteria met (within control limits)?	No
Were ICV/CCV % recoveries within 90-110%?	Yes
Were the Detection Limit CRQL Standards within 70-130?	Yes
Was the %D on form 16-IN for the initial calibration instrument response and concentration data <30%?	N/A
Were ICSA/ICSAB % recoveries acceptable or within CRQL criteria?	Yes
Was the tune %RPD <5% (Peak width < 0.75)?	N/A
Was internal standard criteria met?	N/A

Comments (note deviations):

Serial Dilution	Analyte	Initial Sample <u>Result</u>	<u>%D</u> Acceptable	<u>50 x MDL</u>	<u>Qualifier</u>	Associated Samples
Blanks MB-41148	<u>6020A</u> Antimony	Concentration 0.56		<u>DL / LOQ</u> 0.38 / 5.0	<u>Qualifiers</u> None	Associated Samples Sample result nondetect
ICB ICB-1742267 ICB-1742591	<u>Result</u> Nondetect Nondetect		<u>DL/LOQ</u>	<u>Qualifier</u>	<u>Associ</u>	ated Samples
** Numerous CCBs were perfo	rmed results associated wi	th each of the CCB	s were nondete	ct.		
<u>CCBs</u>	<u>Result</u> Nondetect		<u>DL / LOQ</u>	<u>Qualifier</u>	Associated Samples	
Field Blank N/A	<u>6020A</u>	<u>Concentration</u> (uq/L)	<u>DL / LOQ</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD 1609377-005CMS /MSD	<u>6020A</u> Magnesium Sodium	<u>%R</u> 134 / 97.2% 161 / 65.6%	<u>Limits (%)</u> 83-118 85-117		<u>Qualifiers</u> None None	Associated Samples Sample result 4xs the spike added Sample result 4xs the spike added

LCS/LCSD LCS-41148	<u>6020A</u>	<u>%R</u> Acceptable	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
ICV/CCV	<u>Analvte</u> Acceptable	<u>%R</u>	<u>Limits</u>	<u>Qualifier</u>	fier Associated Samples	
CRQL Standard	<u>Analyte</u>	<u>%R</u> Acceptable	<u>Limits</u>		<u>Qualifier</u>	Associated Samples

Petroleum Hydrocarbons (DRO) / Nonhalogenated Organics (GRO) SW8015D

Precision:

Are the field duplicate relative percent differences (RPD) ≤50%? Were the Matrix Spike Duplicate RPDs $\leq 20\%$? (Or lab defined limits) Laboratory Control Spike Duplicates RPD within limits? Comments (note deviations):

Field Duplicates N/A	<u>8015D</u>	<u>Sample</u>	Duplicate_	<u>%RPD</u>	<u>Qualifiers</u>	Associated Samples
LCS/LCSD N/A	<u>8015D</u>	<u>%RPD</u>	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD 1609334-001DMS / MSD	<u>8015D</u>	<u>%RPD</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
Laboratory Duplicate N/A	<u>Sample</u>	<u>Duplicate</u>	<u>DL / LOQ</u>	<u>%RPD</u>	Qualifier	Associated Samples

Accuracy:

Accuracy:	Yes No N/A
Was the Matrix Spike/Matrix Spike Duplicate criteria met? (frequency ≥ 5% and laboratory determined control limits)	Yes
Laboratory Control Sample criteria met?	Yes
Were the Laboratory Method Blank results all < RL?	No
Were the Field Blanks results all < RL?	N/A
Were the Surrogate % recoveries within laboratory determined control limits?	Yes

Comments (note deviations):

Blanks VOA8 MBLK-091316 MB-41035	<u>8015D</u> GRO	Concentration 19 Nondetect		<u>DL / LOQ</u> 15 / 100	<u>Qualifiers</u> 100 U	<u>Associated Samples</u> GW-05-B, GW-09-A, GW-11-A
Field Blank N/A	<u>8015D</u>	Concentration (ug/L)	<u>DL / LOQ</u>		<u>Qualifiers</u>	Associated Samples
Surrogates	<u>8015D</u>	<u>%R</u> Acceptable	<u>Limit</u>		<u>Qualifiers</u>	Associated Samples
MS/MSD 1609334-001DMS / MSD	<u>8015D</u>	<u>%R</u> Acceptable	<u>Limits (%)</u>		<u>Qualifiers</u>	Associated Samples
LCS/LCSD VOA8 LCS 091316 LCS-41035	<u>8015D</u>	<u>%R</u> Acceptable Acceptable	<u>Limits</u>		<u>Qualifiers</u>	Associated Samples
ICAL (6/6/16 9:04) (9/1/16 10:20)	<u>8015D</u>	<u>RRF</u>	<u>%RSD</u> Acceptable Acceptable	<u>Corr.</u> Coeff.	<u>Qualifiers</u>	Associated Samples
CCV ICV 060616 CCVE 091316	<u>8015D</u>		RRF	%D Acceptable Acceptable	<u>Qualifiers</u>	Associated Samples

Representativeness: Were sampling procedures and desig Were holding times met? Was preservation criteria met? (0° - 6 Were Chain-of-Custody records comp <u>Comments (note deviations): Cooler</u>	yn criteria met? S° C) plete and provided in data pack <u>temperatures was 0.9 ° C .</u>	age?			Yes No N/A Yes Yes Yes Yes
Holding Times	<u>Days to Analysis</u>	HT Criteria Acceptable	Qualifier	Associated Samples	
Comparability: Were analytical procedures and methods followed as defined in the QAPP or field change documentation? Comments (note deviations):					Yes No N/A Yes
Completeness (90%): Are all data in this SDG usable? Comments (note deviations):					Yes No N/A Yes
Sensitivity: Are MDLs present and reported? Do the reporting limits meet project re <u>Comments (note deviations):</u>	equirements?				Yes No N/A Yes Yes

Overall Comments: All data are usable awith appropriate qualifiers applied.

Data Validator:	Kristine Molloy	Date: 11/18/2016
Data Reviewer:	Cherie Zakowski	Date: 11/20/2016