

Clean Energy Communities Energy Study

Prepared for:

Town of Pound Ridge - Town House

179 Westchester Ave.

Pound Ridge, NY 10576

Audit No: CEC204647-1-M

Submitted by:

L&S Energy Services 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065

Date: 6/28/2023

For questions regarding this report, please contact <u>cec@nyserda.ny.gov</u>.

We hope the findings of this report will assist you in making decisions about energy efficiency improvements in your facility. Thank you for your participation in this program.

NOTICE

This report was prepared pursuant to the Flexible Technical Assistance Program (Hereinafter "FlexTech") administered by the New York State Energy Research and Development Authority (hereinafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by NYSERDA or the State of New York. Further, NYSERDA and the State of New York make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. NYSERDA and the State of New York make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, disclosed, or referred to in this report.

State of New York

Kathy Hochul, Governor

New York State Energy Research and Development Authority

Consultant Disclaimer

The opinions expressed in this report do not necessarily reflect those of L&S Energy Services, C.J. Brown Energy P.C., The Daylight Savings Company, or Taitem Engineering P.C. (the Consultants), and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by the Consultants. Further, the Consultants make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. The Consultants make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

This report was prepared by:

L & S Energy 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065 (518) 383-9405

Table of Contents

Executive Summary	1
Present Energy Use and Cost Benchmarking Your Building	3
Project Summary Table	
Note on Energy Project Implementation Costs Greenhouse Gas Reductions for the Recommended Measures	
Energy Efficiency Measure Descriptions	
EEM-1 Interior Lighting Retrofit	
EEM-2 Exterior Lighting Retrofit	
EEM-3 Improve Temperature Control	9
EEM-4 Insulate Building Envelope	
EEM-5 Install Double Glazing EEM-6 Install Duct Insulation	
EEM-7 Insulate Heating And Domestic Hot Water Pipes	
EEM-8 Install Motor Controls	
EEM-9 Replace Condensing Units	
EEM-10 Install A More Efficient Boiler	
Building Electrification Measures	
BE-1 Install A Tankless Water Heater	
BE-2 Install Clean Heating System - Air Source Heat Pump BE-3 Install Clean Heating System - Ground Source Heat Pump	
Existing Conditions	
Lighting Systems	21
Heating Ventilating and Air Conditioning Systems	
Water Heating System	
Other Energy-using Systems	
Appendix A	
Equipment Inventory	
	25
Energy Use and Cost Summary Utility Bill Data	
Appendix C	
EEM Calculations	
Appendix D	
Assumptions/Data Used to Develop Energy and Dollar Savings Figures	42
Appendix E	
Clean Heating and Cooling Technology Overview	45
Appendix F	49

Energy Savings Summaries

Executive Summary

This study was performed to understand how your facility is currently using energy and identify ways to reduce energy use and operating expenses.

Specific areas of concern that were identified by the owner for evaluation include lighting and envelope.

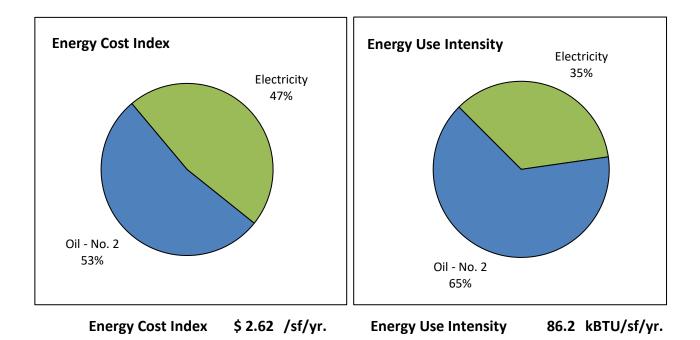
The following energy efficiency measures (EEMs) and observations to reduce energy use were identified during the site visit:

- Interior and Exterior Lighting Retrofits Install LEDs and occupancy controls.
- Improve Temperature Controls Install Wi-Fi Thermostats and implement deep setback schedules.
- Insulate Building Envelope Replace and add attic, wall, and basement insulation.
- Install Double Glazing Replace single pane windows with double pane units and reduce infiltration.
- Install Duct Insulation The AHU ducts do not have insulation throughout the attic.
- Insulate Heating & Domestic Hot Water Pipes There are bare pipes in the basement.
- Install Motor Controls Add controls to turn off HVAC distribution pumps.
- Replace Condensing Units The AC units are very old and need to be replaced.
- Install a More Efficient Boiler Replace the existing boiler with a high efficiency condensing unit.
- Install a Tankless Water Heater Separate the DHW system from the boiler plant.
- Air Source Heat Pumps Replace the AC and Boiler plant with an Air Source Heat Pump system.
- Ground Source Heat Pumps Replace the AC and Boiler plant with a Ground Source Heat Pump system.

These Energy Efficiency Measures are summarized in the Project Summary Table below and discussed in more detail in the Energy Efficiency Measures section of this report.

Present Energy Use and Cost

The energy use for your facility has been compiled to calculate the Energy Cost Index and the Energy Use Intensity.


- The Energy Cost Index (ECI) is the total cost of energy divided by the conditioned floor area and is shown as dollars per square foot per year.
- The Energy Use Intensity (EUI) is the total heat content of energy divided by the conditioned floor area and is shown in units of one thousand Btus (kBtu) per square foot per year.

Energy Cost Index

Electricity	\$ 7,882	\$ 1.23	\$/sq.ft./year
Oil - No. 2	\$ 8,941	\$ 1.39	\$/sq.ft./year
Total Cost	\$ 16,822	\$ 2.62	\$/sq.ft./year

Energy Use Intensity

Electricity	195 mmBtu	30.4 kBtu/sq.ft./year
Oil - No. 2	358 mmBtu	55.8 kBtu/sq.ft./year
Total Energy Use	553 mmBtu	86.2 kBtu/sq.ft./year

Benchmarking Your Building

The EPA's ENERGY STAR Portfolio Manager website allows you to upload energy use information and compare your energy use to that of other buildings of similar use. Portfolio Manager generates a benchmark score that indicates your performance. A benchmark score of 50 indicates average performance while a score of 75 or higher would earn the Energy Star designation. You can use the website to track your energy use over time and document the success of your energy conservation efforts.

You can find the Portfolio Manager at:

https://www.energystar.gov/buildings/facility-owners-and-managers/existingbuildings/use-portfolio-manager

Project Summary Table

	Energy Efficiency Measures			\$	Savings & Co	ost
EEM #	Measure Status	EEM Description	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Interior Lighting Retrofit	5,655	\$ 1,014	\$ 5,518	5.4
EEM-2	R	Exterior Lighting Retrofit	41	\$4	\$ 42	10.6
EEM-3	R	Improve Temperature Control	9,162	\$ 1,354	\$ 2,700	2.0
EEM-4	RS	Insulate Building Envelope	30,690	\$ 4,673	\$ 52,918	11.3
EEM-5	RS	Install Double Glazing	13,979	\$ 1,935	\$ 36,774	19.0
EEM-6	NR	Install Duct Insulation	221	\$ 22	\$ 1,200	55.3
EEM-7	R	Insulate Heating And Domestic Hot Water Pipes	868	\$ 133	\$ 349	2.6
EEM-8	R	Install Motor Controls	1,765	\$ 173	\$ 300	1.7
EEM-9	NR	Replace Condensing Units	2,990	\$ 463	\$ 19,000	41.0
EEM-10	ME	Install A More Efficient Boiler	12,387	\$ 1,897	\$ 15,000	7.9
		Total of Recommended Measures:	17,491	\$ 2,678	\$ 8,909	3.3

Measure Status Explanation:

(I) - Implemented: Measure has been installed

(R) - Recommended: Energy saved with a reasonable payback (within measure life)

(NR) - Not Recommended: When payback exceeds measure life and equipment is not at end of life

(RME) - Recommended Mutually Exclusive: Energy is saved and recommended over other options for a particular measure

(ME) - Mutually Exclusive: Non-recommended option(s) to a Recommended Mutually Exclusive (RME) measure

(RNE) - Recommended Non-Energy: Recommended based on other, non-energy factors such as comfort, water savings or equipment at end of life

(RS) - Recommended for Further Study: For measures that require analysis beyond the scope of this program.

(BE) – Building Electrification: Measures that should be considered based on greenhouse gas reductions, eliminating on-site use of fossil fuels, or other sustainability factors

Building Electrification Measures			\$ Savings & Cost					
EEM #	Measure Status	Building Electrification Measure Descriptions	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)	Estimated Incentives	Simple Payback after incentives
BE-1	R	Install A Tankless Water Heater	3,725	\$ 590	\$ 1,000	1.7	\$ 2,809	1.7
BE-2	RWF	Install Clean Heating System - Air Source Heat Pump	20,812	\$ 4,194	\$ 47,160	11.2	\$ 17,760	7.0
BE-3		Install Clean Heating System - Ground Source Heat Pump	28,128	\$ 5,145	\$ 145,730	28.3	\$ 18,422	24.7
		Total of Recommended Measures:	24,537	\$ 4,784	\$ 48,160	10.1	\$ 20,569	5.8

Simple Payback Period is the length of time it will take to recover the initial capital investment from the energy savings of the new equipment. The Simple Payback Period is calculated by dividing the initial installed cost by the annual energy cost savings. For example, an energy-saving measure that costs \$5,000 and saves \$2,500 per year has a Simple Payback Period of \$5,000 divided by \$2,500 or 2 years.

Note on Energy Project Implementation Costs

The "Project Costs" shown in this report for each Energy Efficiency Measure represent an initial estimate of the implementation cost. Unless otherwise noted in the Energy Efficiency Measure description, these costs reflect a preliminary estimate of material and labor. There may be other variables associated with your specific project that will impact the true project costs that the study may not capture. Other external factors that may impact true project costs and payback include material availability, vendor scheduling, access within the facility, general inflation, available measure incentives, and other unknown factors and conditions. For measures which significantly impact your building's usage, it is also important to determine any potential utility rate and/or tariff changes, those of which are beyond the scope of this report. We recommend that you seek several quotes from qualified vendors prior to implementation.

Greenhouse Gas Reductions for the Recommended Measures

Reducing your energy use will reduce the release of greenhouse gases associated with the use of fossil fuels and the production of electricity. If the measures recommended in this report are implemented, the following reductions of greenhouse gases can be expected:

Electricity				
,	(19,466)	kWh =	(22,580)	pounds CO2 equivalent
Oil - No. 2	2,874	gal. =	64,608	pounds CO2 equivalent
			42,028	pounds CO2 equivalent
			33.7%	reduction

Emissions factors are used to translate the energy savings data from energy efficiency and renewable generation projects into annual GHG emissions reduction values. NYSERDA uses emission factors derived from U.S. Environmental Protection Agency (EPA) emission coefficients to calculate emissions from onsite fuel. The CO2e values represent aggregate CO2, CH4, and N2O emissions.

Energy Efficiency Measure Descriptions

EEM-1 Interior Lighting Retrofit

Electric Savings:	\$ 1,376			kWh per year kW demand
Fuel Savings:	(\$ 362)		(14.5)	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 1,014			
Project Cost:	\$ 5,518			
Simple Payback:	5.4	year s		

Introduction:

The existing lights consist primarily of fluorescent T-8 tubes and incandescent lamps in wall or ceiling sconces. Many of the spaces have lights that are left on when nobody is in the room. As such occupancy sensors should be installed.

Both the appendix and calculations show the specific locations, quantities, and fixture types for replacement.

Recommendation:

Replace the lamps with LED equivalents. The fluorescent fixtures could also be replaced, but a cheaper option exists by cutting out the ballast and direct wiring in LED self-driving T-8 tubes.

Consider calling the NYSEG direct installation program opportunity if the Town is too busy or does not have the resources to install, replace, or relamp the new lights and occupancy sensors as directed in the calculations.

EEM-2 Exterior Lighting Retrofit

Electric Savings:	\$ 4			kWh per year kW demand
Fuel Savings:	\$ O		0.0	MMBtu fuel per year
Total Annual Savings: Project Cost:	\$ 4 \$ 42			
Simple Payback:	10.6	year s		

Introduction:

The motion sensor fixtures on the side of the building have incandescent lamps.

Recommendation:

Replace the lamps with LED equivalents.

EEM-3 Improve Temperature Control

Electric Savings:	\$ 88	773 0.0	kWh per year kW demand
Fuel Savings:	\$ 1,266	50.7	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 1,35 4		
Project Cost:	\$ 2,700		
Simple Payback:	2.0 year s		

Introduction:

Proper temperature control is important in order to minimize energy costs. Maintaining space temperatures within a reasonable range during occupied periods and reliably reducing the amount of heating and cooling energy during unoccupied periods should be the goal for your temperature control system.

Facilities that are occupied only on weekdays can maintain a lower space temperature setpoint on weekends. Programmable thermostats are available that permit full 7-day schedules to be defined. 5-2 or 5-1-1 thermostats use the same schedule for all weekdays and provide one or two schedules for weekend days.

Recommendation:

There are multiple types of thermostats in each of the spaces. While most are programmable, staff overwrite the programs and keep the zones at a constant temperature even when they leave for the night.

This measure recommends installing (9 total) Wi-Fi enabled thermostats so that the facility manager can control each zone and maintain the space temperatures when occupied. The calculation provides an example of a 4-degree setback at night, but the mechanical contractor should provide a detailed quote and plan to deepen the setbacks a much as possible to save energy and maintain comfort during occupied times.

EEM-4 Insulate Building Envelope

Electric Savings:	\$ 49		432 0.0	kWh per year kW demand
Fuel Savings:	\$ 4,623		185.3	MMBtu fuel per year Oil - No. 2
Total Annual Savings: Project Cost:	\$ 4,673 \$ 52,918			
Simple Payback:	11.3	year s		

Introduction:

Heat moves from areas of high temperature to areas of low temperature. As the temperature difference between a heated and an unheated space becomes greater, so does the rate of heat transfer. Insulation reduces the rate of heat transfer by filling the space with material that is less conductive than what is currently there. The effectiveness of insulation is measured by R-value, which is the resistance to heat transfer. As the R-value increases, the rate at which heat is transferred decreases.

Insulation can be installed in enclosed spaces, such as wall cavities, cathedral ceiling cavities, and floored attic cavities. It can also be installed in unfloored attics, which can accommodate greater thickness resulting in higher R-value. When insulation is combined with air sealing, convective air currents that circulate air within cavities and through insulation are reduced, which increases the effective R-value of the insulation.

Recommendation:

This measure provides an example of increasing the R-Value in the roof from an estimated R-10 to R-38, and the walls from R-3.7 to R-10. The measure is recommended for further study due to many reasons and costs should be ascertained by competent contractors who specialize in both removal and remediation of old insulation and sealing other penetrations. Costs for insulating the basement ceiling between the joists should be included as well as different scenarios for the walls, because they may not be able to be insulated adequately with blown in insulation, where an exterior insulating finishing system might be the best opportunity to maximize the R-Value.

EEM-5 Install Double Glazing

Electric Savings:	(\$ 206)		0 0.0	kWh per year kW demand
Fuel Savings:	\$ 2,141		85.8	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 1,935			
Project Cost:	\$ 36,774			
Simple Payback:	19.0	year s		

Introduction:

Single pane wooden or metal frame windows can be very inefficient. Heat loss due to conduction through single pane windows can be very high. New windows utilize two panes of glass instead of one. Glass performance is measured in two ways Solar Heat Gain Co-efficient (SHGC) or Visible Transmittance (VT). SHGC is the amount of solar gain transmitted through a window into the building. VT refers to the amount of visible light that moves through the glass from exterior to interior. These two factors can be altered for a higher performing window by adding Low-E coatings and spacers with gas. The overall thermal performance of windows is generally assigned a u-value. This measurement considers all parts of a window. These parts include the frame, sash, and glass. The installation of windows with double glazing will reduce infiltration and conduction losses.

Recommendation:

Install new double-glazed windows with low-e coatings. Be sure that windows are fully caulked on the exterior and interior where they meet the existing building structure. The EPA and DOE have developed stringent standards for windows. Windows that meet these standards can earn the Energy Star Label. Replacement windows should bear the Energy Star label.

This measure provides an estimate for replacing the single pane windows with new double pane units that prevent air leakage through the frames, which was based on 10% of the overall wall area. Savings for increasing the R-Value from 0.9 to 3 and reducing the infiltration by half. Windows are prohibitively expensive, due mainly to custom sizes and labor. This measure is recommended for further study like the previous measure for the same reasons of cost creep due potential issues with an older building. Though, if the same contractor is able to replace and seal the windows, there could be a reduction in costs through scale.

EEM-6 Install Duct Insulation

Electric Savings:	\$ 22	190 0.0	kWh per year kW demand
Fuel Savings:	\$ O	0.0	MMBtu fuel per year
Total Annual Savings: Project Cost: Simple Payback:	\$ 22 \$ 1,200 55.3	year s	

Introduction:

Sheet metal ducts located in basement, attic or other unconditioned spaces lose energy and reduce overall system efficiency. The heating and cooling systems must operate longer to compensate for this energy loss. Adding insulation to supply and return air ducts will reduce this energy loss and improve system efficiency.

Ducts in conditioned spaces experience minimal conductive losses and gains since they are exposed to indoor spaces that must be conditioned in any event. However, these ducts may also require some insulation to prevent condensation on duct walls and to ensure that conditioned air is delivered at the desired temperature.

Recommendation:

This measure provides an example of the potential savings for insulating the attic AC ducts. Due to lower hours of use, this measure does not have a good payback relative to costs and is not recommended.

This measure is impacted by other AC and Building Electrification retrofit measures, which may require replacement of the existing distribution systems. It may also be a good idea to implement EEM-4 prior to installing new AC equipment).

Further, staff indicated that the zone controllers were not working, which should be ascertained by the mechanical contractor. The costs of fixing the existing system should be compared against the costs of replacement.

EEM-7 Insulate Heating And Domestic Hot Water Pipes

Electric Savings:	\$ O		0 0.0	kWh per year kW demand
Fuel Savings:	\$ 133		5.3	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 133			
Project Cost:	\$ 349			
Simple Payback:	2.6	year s		

Introduction:

Heat is distributed through the building by pipes containing hot water or steam. Heating distribution system pipes lose heat to the surrounding space. If the heat is lost to an area that does not require heating, the drop in system efficiency can be significant. Un-insulated pipes in conditioned space may also overheat the space, wasting energy and causing comfort problems. All heating distribution system pipes located in unconditioned space should be insulated.

Recommendation:

The heating hot water distribution pipe from the boiler to the pumps is not insulated fully. The domestic hot water pipes from the submerged coil are not insulated at all, and they are always hot.

Install 2 in. insulation on (10 ft.) of 2 in. Dull Copper Hot Water pipe, 0.5 in. insulation on (25 ft.) of 0.5 in. Dull Copper DHW pipe and 1 in. insulation on (10 ft.) of 1 in. Dull Copper DHW pipe.

EEM-8 Install Motor Controls

Electric Savings:	\$173	1,521 0.0	kWh per year kW demand
Fuel Savings:	\$ O	0.0	MMBtu fuel per year
Total Annual Savings: Project Cost: Simple Payback:	\$ 173 \$ 300 1.7	year s	

Introduction:

The heating hot water/cold water pumps cycle monthly. However, one always operates to circulate the cold water or the hot water at all times even if the thermostats are not calling for heat from the radiators or cold air from the AHUs.

These motors will reach the end of their useful life faster. The pipes will lose temperature to the space while circulating water needlessly during unoccupied times causing the boiler or condensing units to engage more often during short cycles. This causes the units to operate inefficiently at low loads.

Recommendation:

The mechanical contractor should identify a control mechanism such as an aquastat to disengage the pump when the loop or thermostat temperatures are satisfied.

This calculation only estimates savings for reducing the running time of the motor by an estimated 50%. There are additional savings for interactive heating and cooling that can be identified for further study.

EEM-9 Replace Condensing Units

Electric Savings:	\$ 463	2,578 3.1	kWh per year kW demand
Fuel Savings:	\$ O	0.0	MMBtu fuel per year
Total Annual Savings: Project Cost: Simple Payback:	\$ 463 \$ 19,000 41.0	year s	

Introduction:

Air conditioning units that are over 15 years old may use reciprocating compressors and obsolete refrigerants. Current models use reliable scroll compressors and modern refrigerants to meet today's more stringent efficiency requirements. Replacement models are rated with an Energy Efficiency Ratio, commonly called EER. The higher the EER, the more efficient the unit. SEER is the Seasonal Energy Efficiency Ratio, which indicates the average EER over the course of a cooling season. The SEER will be higher than the EER for a given piece of equipment, so be sure to compare products using the same measurements.

The energy savings of a new air conditioning system is often not enough to warrant the purchase of a new unit. However, if the air conditioner requires repair or needs replacement for another reason, the highest EER rated equipment should be purchased.

Recommendation:

The original condensing units are at the end of their service life and need to be replaced. Due to the low hours of use, and the high cost of replacement, this measure does not pay back and is not recommended. They are also at the end of their useful lives, so the costs to replace should be used to compare against high efficiency building electrification measures that will be described in subsequent measures.

EEM-10 Install A More Efficient Boiler

Electric Savings:	\$0	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 1,897	76.0	MMBtu fuel per year Oil - No. 2
Total Annual Savings: Project Cost:	\$ 1,897 \$ 15,000		
Simple Payback:	7.9	year s	

Introduction:

Boiler efficiency is determined by the efficiency of the boiler burner and heat exchanger, jacket heat losses, flue losses, and boiler sizing relative to the heating load. Boilers that are oversized spend more time in standby mode, increasing the impact of high off-cycle flue losses. These types of boilers perform at overall efficiencies significantly lower than their nominal thermal efficiency (Et), which is measured at a steady state of boiler operation.

Non-condensing boilers are limited to thermal efficiencies up to ~85% Et if equipped with power burners and low-mass heat exchangers; 80% Et boilers are more common. Condensing boilers are designed to cool flue gases to the point where water vapor produced in the combustion process condenses. The thermal efficiency of a condensing boiler depends on the entering water temperature, with lower temperatures yielding higher efficiency. Condensing boilers can achieve thermal efficiencies between 88% and 98%.

Recommendation:

This measure simply provides an analysis for installing a new oil fired condensing boiler. Though, it may be difficult to procure one since most condensing units have gas/propane fired burners. In addition, the boiler will not have a domestic hot water coil, so a new domestic hot water maker will need to be purchased (note that there are many options for high efficiency combi-boilers, but they also require gas/propane). Hot water heating via perimeter radiators is not the most effective way to heat this facility since the walls are not insulated. Most facilities cannot overcome this deficiency, but ducts provide cold air via water coils in the AHUs. There could be a way to retrofit the air distribution system to provide hot air via a gas fired condensing furnace.

NYS has goals to remove fossil fuel heating from buildings, and the boiler is reaching the end of its useful life in a few years. Now is the time to have a comprehensive plan to upgrade the building infrastructure before a failure necessitates an emergency boiler replacement that will last another 15 years. The mechanical contractor should provide quotes for both the replace-in-kind as well as consideration of a gas furnace, but both should be used to compare against the subsequent building electrification measures. As such, this measure is considered mutually exclusive despite a potential good payback.

Building Electrification Measures

The following measures evaluate the impact of replacing your existing fossil-fuel heating systems with clean heating and cooling systems powered by electricity. For space heating, air source heat pumps and ground source heat pumps are available in various system types to provide both heating and cooling to your building.

Fossil fuel-fired water heaters may also be replaced with heat pump water heaters to further reduce your use of fossil fuels.

When combined with renewable electricity, heat pump systems can eliminate the use of fossil fuels in your building.

See Appendix E - Benefits Of Clean Heating and Cooling (CHC) Technologies for more information on these system types.

BE-1 Install A Tankless Water Heater

Electric Savings:	(\$ 567)		kWh per year kW demand
Fuel Savings:	\$ 1,157	46.4	MMBtu fuel per year Oil - No. 2
Total Annual Savings:	\$ 590		
Project Cost:	\$ 1 <i>,</i> 000		
Simple Payback:	1.7 ^{yea}	rs	

Introduction:

There is a submerged coil in the boiler that provides hot water on demand. During the summer, the demand on the boiler is so low that the unit operates inefficiently to make domestic hot water.

This calculation estimates that the current oil usage is 14% for domestic hot water using utility bill extrapolation. This is quite high for simply hand and dishwashing.

Recommendation:

Install a tankless on demand unit that is electric that is size to serve the hot water loads in the facility.

BE-2 Install Clean Heating System - Air Source Heat Pump

Simple Payback:	11.2	years 7		years after incentives
Total Annual Savings: Project Cost:	\$ 4,194 \$ 47,160			
Fuel Savings:	\$ 7,702	308	5./	MMBtu fuel per year Oil - No. 2
Electric Savings:	(\$ 3,508)	(25,4) 2)	kWh per year kW demand

Introduction:

Air source heat pumps (ASHP) provide both heating and cooling using electricity to exchange energy with the outdoor air. Existing buildings may be retrofitted with various heat pump technologies to reduce or eliminate their dependence on fossil fuels for space heating. System options range from centrally-ducted cold climate air source heat pumps and mini-split heat pumps to large variable refrigerant flow systems having multiple indoor units supported by each outdoor unit.

At very cold outdoor air conditions, air source heat pumps may require supplemental heat to meet your building's heating load. Supplemental heat may be in the form of electric resistance heat or your existing fossil-fueled heating system, if it remains in service. The extent to which an ASHP system reduces your fossil fuel use will depend on the exact design and control of your new system.

Recommendation:

Replace your oil - no. 2 heating system with a central ducted air source heat pump system serving the entire building. The system type is: Central Ducted ASHP with Integrated/ Modulating controls sized to 100% of the building heating load.

The heat pumps are assumed to be rated at 13.05 EER full load cooling, 15 SEER. The heat pumps are assumed to be rated at 10 HSPF for heating, which may be adjusted to 2.52 COP. Be sure to specify heat pumps that meet NEEP requirements (Northeast Energy Efficiency Partnerships). See https://ashp.neep.org/#!/product_list/ for current models that meet these requirements.

They should be rated for cold climates (needing a larger size to accommodate the reduction in capacity during cold temperatures) so that the boiler plant can be removed. This measure has the best payback for heating and cooling the facility with heat pumps and is considered recommended, mutually exclusive. However, this is based on probable costs without incentives. The subsequent ground source heat pump has better utility incentives at this time and should be also evaluated.

BE-3 Install Clean Heating System - Ground Source Heat Pump

Simple Payback:	28.3	, ,	24.7	years after incentives
Total Annual Savings: Project Cost:	\$ 5,145 \$ 145,730			
Fuel Savings:	\$ 7,067		283.3	MMBtu fuel per year Oil - No. 2
Electric Savings:	(\$ 1,922)		(15,531) 3.4	kWh per year kW demand

Introduction:

Smaller buildings can take advantage of water-to-air ground source heat pump technology by replacing furnaces and other ducted systems with heat pumps having either open or closed loop ground heat exchangers. Closed loop ground heat exchangers that are properly sized provide water between 32° and 77° for heat pumps to draw heat from or reject heat to. Open loop systems see water temperatures of ~50° throughout the year. This allows heat pumps to operate at higher efficiency than air-source heat pumps that must draw from more extreme outdoor air temperatures.

The heat pumps in this type of system each have a loop pump. The building may have multiple heat pumps, but every heat pump must have a dedicated ground source heat exchanger. The heat pumps should have two-stage or variable capacity compressors for the highest efficiency. The loop pump may be constant speed, but two-speed or variable speed pumps offer higher efficiency and are preferred.

Recommendation:

Consider replacing your present heating system with a clean heating and cooling system using ground source heat pumps.

Install a closed loop heat pump system with variable-speed compressors and variable pumping. The heat pumps are assumed to be rated at 17 EER full load cooling, 22 EER part load. The heat pumps are assumed to be rated at 3.6 COP full load heating, 4.1 COP part load.

This is the most efficient option; however, it has the highest cost component without incentives. NYSEG has a very good incentive opportunity for GSHPs relative to ASHP and the Federal Inflation Recovery Act has likely a 40% tax credit (that can be directly paid to the municipality) available, making this option likely on par with the previous measure. Consult a competent contractor to identify the possibility of this option in addition to the ASHP that are recommended based on this study.

Existing Conditions

This site is a Town Hall with multiple departments. Originally, this building was constructed in 1850 as a private residence. There was an addition in 1988 that built out the rear and expanded the second story. Overall, the facility is 6,420 ft² with 3,658 ft² on the first floor and 2,762 ft² on the second floor. There are at least 20 staff in the office daily with many more people coming in person to meet with the staff about their buildings, taxes, or have meetings at the court, or for their committees and non-profits as this building is one of the only places in town to gather in a public forum. The typical office hours are 9-5 M-F, but oftentimes meeting spaces are open as late as midnight.

There is a small basement and crawlspace under the original part of the building. The basement has a slab floor and stone walls, while the crawlspace has a dirt floor. The building is wood frame, with 2"x4" boards in the original building and 2"x6" boards in the addition. There is no insulation between the wall frames in the original building, but there is some insulation in the addition. The exterior siding is wood cladding, and the interior is drywall. The main hipped roof has minimal, aged insulation, boarded up on the underside of the roof deck above the attic. A smaller hipped roof has an attic crawlspace, which has vermiculite, or similar older insulation on the attic floor between the joists.

The original building has exclusively single pane windows. About half the windows are double hung, while the others are fixed or can open by handle. The addition has double pane glass and double hung windows. All have wood frames. There are also several doors to the facility, and they are all solid wood with good weather stripping and/or seals.

Lighting Systems

Lighting is primarily 4' T-8 fluorescent surface mount fixtures. There are also a mixture of candelabra type chandelier or wall sconce incandescent fixtures as well as incandescent ceiling surface mount lamps. The recessed lamps are either incandescent, or LED. Some desk lamps are CFL. All lights are controlled via switches, and many are left operating all day (and evening) when the space is unoccupied until the last person (or security) in the office turns them off at night.

Exterior fixtures consist of LED wall packs that operate at night with photocells, and two CFL wall sconces on a switch at night. The side doors have 100W incandescent lights on motion sensors.

Heating Ventilating and Air Conditioning Systems

Heating is provided by a hot water cast iron boiler, fired by oil. The boiler is a Peerless, model EC-04-WPCL, manufactured in 2013. It has a firing rate of 1.75 gallons per hour, and 245 Mbh, with an output of 215 Mbh, per specifications found online. The DOE energy rating sticker is 84.5% while the specifications suggest an AFUE of 86.8%. The boiler uses two, 1/2 hp pumps (that cycle monthly) to circulate hot water to radiator/console units along the perimeter of the facility. Most of the pipes in the boiler room are insulated.

Cooling is provided by two condensing units that cool water pipes instead of refrigerant lines. The condensing units are Trane, model TTD760B1000A2 units from 1990. The outdoor fan motor has a 1/4 capacity. The water loop ties into the (same heating) pumps in the basement which circulate the cold water to two air handling units (AHUs) in the attic space that distribute cold air to ducts in the wall. The AHUs are Magic Aire 36-BHW-4 units with 1/3 hp units with a 3-ton capacity. The air handlers serve ducted distribution in the walls along the first and second floors. The ducts in the attic are not insulated.

The addition has a separate heating and cooling distribution system located in the attic that was not accessed during the walkthrough. The AHU has a hot water coil that uses the existing boiler, and a refrigerant coil that is served by a Lennox condensing unit, model HS18-461-4P, manufactured in 1997.

There are various controls serving the zones. The addition has old Robert Shaw analog units, and Town Supervisor has a new Honeywell touchscreen home unit. The rest of the units are Honeywell digital 5-1-1 thermostats. The controls, however, are not used for the most part. Staff overwrite the controls and hold the temperature. They claim that heating and cooling do not work well in parts of the building, and therefore the control setpoints are held around 70-74 °F in heating and cooling modes.

Staff also claim that the zone dampers for the cooling system do not work. There is also likely an imbalance in the building. Another issue is that the size of the systems is unable to serve the spaces in peak temperatures due to leaky windows and uninsulated or poorly insulated walls/windows.

The heating system is valved off from the main distribution during cooling season and vice versa. The circulator pump never turns off despite the controls not calling for heating or cooling.

The server room has a small window AC unit. It is a Perfect Aire unit with a 5,000 Btu/h capacity and an 11 CEER. The basement has an Electrolux dehumidifier with a 50 pint/day capacity that was manufactured in 2010.

Water Heating System

The boiler has a submerged coil in it for hot water needs and stays hot all year round. There is no storage tank and the $\frac{1}{2}$ " copper pipes are not insulated. The temperature was measured at 123 °F and the water is used for handwashing and dishwashing.

Other Energy-using Systems

This building has typical office equipment. Each space has multiple computers and printers. There is a security system, and two server cabinets. There is a small kitchen with a refrigerator, microwave, toaster, oven set, and a dishwasher.

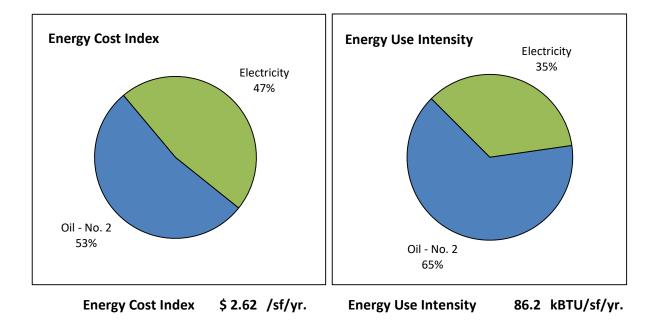
See Appendix D for further details regarding the energy calculations performed for this study.

Equipment Inventory

	Heating and Air Conditioning Equipment											
Unit Type	Qty	Make/Model	Heating kBtuh	Heating Eff.	Cooling Capacity	Units	EER	Serves/Location	Year			
Cast Iron Boiler	1	Peerless EC-04-WPCL	245	84.50%				All Building/Basement	2013			
Condensing Units	2	Trane TTD760B1000A2			3	tons	9.0	All Building/Ext. Rear	1990			
Window AC	1	Perfect Aire 5PMC			0.42	tons	11.0	Server Room	2018			
Split System AC	1	Lennox HS18-461-4P			3 1/2	tons	9.0	Addition/Ext. Rear	1997			

Domestic Hot Water									
Unit Type	Qty	Make/Model	Capacity	Units	Fuel Type	Storage Capacity (gal.)	Eff.	Serves/Location	Year
Tankless	1	Peerless EC-04-WPCL	245	kBtu/h	Oil - No. 2	None	84.5%	Faucets/Basement	2013

					Motors				
Unit Type	Qty	Make/Model	HP	Loading	Туре	Hours/year	Eff.	Serves/Location	Year
Filtration Pump	1	Baldor Reliance	1/2					Domestic Water Tanks/Basement	
HHW/CHW Pump	1	Baldor Reliance	1/2					Radiators & AHUs/Basement	
HHW/CHW Pump	1	Magnetek	1/3					Radiators & AHUs/Basement	
Condenser Fan	2	Trane	1/4					Cooling/Exterior Rear	
AHU Fan	2	Magic Aire	1/3					Cooling/Attic	


					Interio	or Lighting Fixtu	res				
	Existing Fixtures					Recommended	Recommended Inte	rior Ligh	ting Efficiency Improvements		
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt
1	Basement	6	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	6	4' LED T8 2000 lu. 14W	2	28
2	Basement	1	100 watt Incandescent	1	100	No Change	LED Relamp	1	A19 LED, 14W	1	14
3	Basement	1	A19 LED, 9W	1	9	No Change	No change	1	A19 LED, 9W	1	9
4	Bldg. Dept.	5	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	5	4' LED T8 2000 lu. 14W	2	28
5	Bldg. Dept. Vault	5	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	Linear LED Bypass	5	4' LED T8 2000 lu. 14W	2	28
6	Records Room	2	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	Linear LED Bypass	2	4' LED T8 2000 lu. 14W	2	28
7	Tax Office	4	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	4	4' LED T8 2000 lu. 14W	2	28
8	Rear Hallway	4	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	4	4' LED T8 2000 lu. 14W	2	28
9	Hallway	2	60 watt Incandescent	1	60	No Change	No change	2	A19 LED, 9W	1	9
10	Hallway	1	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2	28
11	Court Office	3	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	Linear LED Bypass	3	4' LED T8 2000 lu. 14W	2	28
12	Kitchen	2	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	Linear LED Bypass	2	4' LED T8 2000 lu. 14W	2	28
13	Side Hallway	3	75 watt Incandescent	1	75	No Change	LED Relamp	3	A19 LED, 9W	1	9
14	Dining Room	1	25 watt Incandescent	8	200	No Change	LED Relamp	1	A15 LED, 5W	8	40
15	Dining Room	8	PAR30 LED, 12W	1	12	No Change	No change	8	PAR30 LED, 12W	1	12
16	Dining Room	6	40 watt Incandescent	1	40	No Change	LED Relamp	6	A15 LED, 6W	1	6
17	Town Clerk	6	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	Linear LED Bypass	6	4' LED T8 2000 lu. 14W	2	28
18	Clerk Office	3	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	3	4' LED T8 2000 lu. 14W	2	28
19	Reception	1	25 watt Incandescent	3	75	No Change	LED Relamp	1	A15 LED, 5W	3	15
20	Reception	2	40 watt Incandescent	1	40	No Change	LED Relamp	2	A15 LED, 6W	1	6
21	Courtroom	11	PAR30 LED, 12W	1	12	No Change	No change	11	PAR30 LED, 12W	1	12
22	Supervisor Office	3	100 watt Incandescent	1	100	No Change	LED Relamp	3	A19 LED, 14W	1	14
23	Supervisor Office	4	40 watt Incandescent	1	40	No Change	LED Relamp	4	A15 LED, 6W	1	6
24	Supervisor Office	3	PAR30 LED, 12W	1	12	No Change	No change	3	PAR30 LED, 12W	1	12
25	Assistant Office	1	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2	28
26	Assistant Office	2	60 watt Incandescent	1	60	No Change	LED Relamp	2	A19 LED, 9W	1	9
36	Bathroom	1	11w CFL Spiral Elec. bal.	1	11	No Change	No change	1	11w CFL Spiral Elec. bal.	1	11
37	Server Room	1	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2	28
38	Meeting Room	1	4' 32w T8 Elec. bal.	2	59	No Change	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2	28

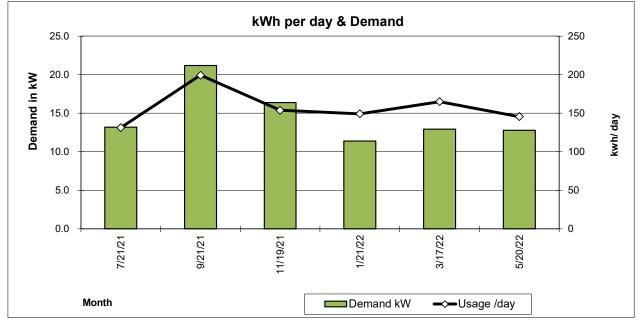
					Exterio	or Lighting Fixtu	ıres				
	Existing Fixtures					Recommended	Lighting Efficiency Ir	nproven	nents		
Line #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Watts /Fixt
1	Front	3	LED area light, 28W	1	28	No Change	No change	3	LED area light, 28W	1	28
2	Side	2	100 watt Incandescent	2	200	No Change	LED Relamp	2	PAR30 LED, 12W	2	24
3	Front	2	15w CFL Spiral Elec. bal.	1	15	No Change	No change	2	15w CFL Spiral Elec. bal.	1	15

Appendix B

Energy Use and Cost Summary

Energy		Units Used	I	BTU/unit	mmBTU	% of total	kBtu/sq.ft./year
	Electricity	57,120	kwh	3,412	195	35%	30.4
	Oil - No. 2	2,597	gal.	138,000	358	65%	55.8
	Total				553		86.2
Cost		Energy Cost	Unit Costs	5	% of total	\$/sq.ft./ye	ar
Electr	icity	\$ 7,882	\$ 0.114	l kwh	47%	\$ 1.23	
Oil - N	lo. 2	\$ 8,941	\$ 3.443	3 gal.	53%	\$ 1.39	
Total		\$16,822				\$ 2.62	

Utility Bill Data

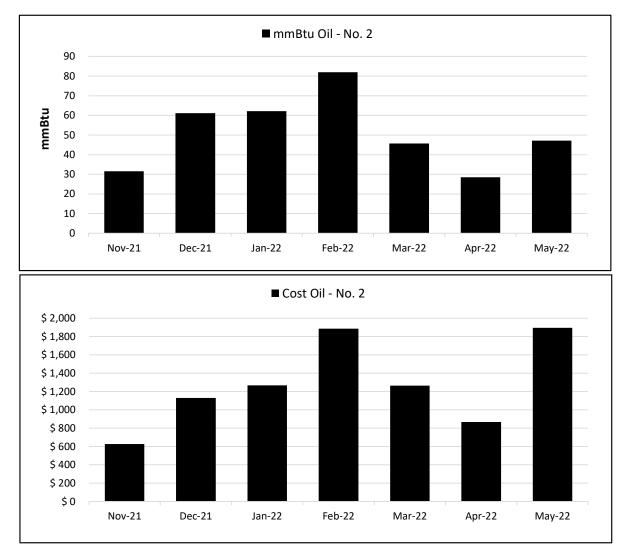

The following pages present the energy use and cost data for your facility and establish the value of each type of energy. Electricity is measured and billed in units of kilowatt-hours (kWh) that represent the total amount of electricity used in the billing period. Electricity may also be billed based on the highest rate of use, or peak demand, that occurred during the billing period. Electric demand is billed in units of kilowatts (kW).

Other fuels may be billed in volume units (gallons, hundred cubic feet or ccf, etc.) or based on their heat content (therms, equal to 100,000 British Thermal Units). All energy types may be converted into a common unit, such as BTUs, to facilitate analysis and comparison with other facilities. One million BTUs is abbreviated as mmBtu in this report.

ELECTRICITY CONSUMPTION AND COST ANALYSIS

Town of Pound Ridge - Town Hous	e	Utility: N	VYSEG	
		Account # e	ends w/ -16	2
Gross Area: 6,420	s.f.	Rate: S	SC .	
30,357	Btu/s.f./Yr	Meter Charge:	\$ 33.00	/ month
\$ 1.23	/s.f.	Demand Charge:	\$ 10.85	/ kW
3.3	watts/s.f.	Supplier:		

			Usa	ge	Electricit	y Charges	Total				
	Month		Energy	Demand	Utility	Supply	Electricity	Demand	Energy	Load	Usage
	Ending	Days	kWh	kW	Cost	Costs	Cost	Cost	\$/kWh	Factor	/day
	7/21/21	60	7,880	13.2	\$ 393	\$ 722	\$ 1,115	\$ 143	\$ 0.115	0.41	131
	9/21/21	62	12,360	21.2	\$ 616	\$ 1,132	\$ 1,748	\$ 230	\$ 0.117	0.39	199
	11/19/21	59	9,080	16.4	\$ 477	\$ 831	\$ 1,309	\$ 178	\$ 0.117	0.39	154
	1/21/22	63	9,400	11.4	\$ 373	\$ 841	\$ 1,214	\$ 124	\$ 0.109	0.55	149
	3/17/22	55	9,080	12.9	\$ 388	\$ 813	\$ 1,201	\$ 140	\$ 0.110	0.53	165
_	5/20/22	64	9,320	12.8	\$ 403	\$ 892	\$ 1,295	\$ 139	\$ 0.117	0.47	146
		363	57,120	87.9	\$ 2,651	\$ 5,231	\$ 7,882	\$ 954	\$ 0.114	0.45	157
		А	nnual Energy:	57,120	kWh / year	\$ 7,882	/year	Unit Costs			
		P	Peak Demand:	21	kW Peak		Demand	l \$ 10.85	\$/kW		
		Ave	rage Demand:	15	kW		Energy	\$ 0.114	\$/kWh Increm	nental	
							Blended	\$ 0.138	\$/kWh Blende	ed	


Note:

The electric supply costs for July, September, and November were extrapolated based on data provided for January, March, and May. The rate class, meter charge, and demand charges were each estimated based on NYSEG's current tariffs.

ALL FUELS CONSUMPTION AND COST ANALYSIS

Town of Pound Ridge - Town House

Month	mmBtu Oil - No. 2	Cost Oil - No. 2
Nov-21	32	\$ 628
Dec-21	61	\$ 1,130
Jan-22	62	\$ 1,267
Feb-22	82	\$ 1,886
Mar-22	46	\$ 1,266
Apr-22	29	\$ 869
May-22	47	\$ 1,895
Total	358	\$ 8,941
\$/mmBtu	\$ 24.95	
BTU/unit	138,000	1 mmBtu = 1,000,000 Btus
kBtu/SF/Yr.	55.8	1 kBtu = 1,000 Btus

Appendix C

EEM Calculations

Interactions

The Energy Efficiency Measure calculations in this section are stand-alone measures that are not interacted with the other calculations. Each measure shows the energy savings that may be expected if it is the only measure to be implemented. If multiple measures will be implemented, energy savings will likely be lower than the calculations represent.

As an example, replacing an 80% efficient boiler with a 92% efficient boiler will reduce the amount of fuel required to heat the building. If the walls and roof are insulated such that the required heating energy is reduced by 30%, the new boiler will serve a smaller heating load, and the energy savings gained from the boiler replacement will be reduced by 30%.

A 41 ALU 471A																										
		OR INTERIOR LIC			ROFIT		Tuner	Units:	Linit east.	DTU/unit						HVAC Adjus	tmont Footo		-							
	Town	of Pound Ridge - To	wn Hou	ise			Type: Oil - No. 2		Unit cost:	BTU/unit 138.000						Cooling	Demand	Fuel	1							
								gal.	\$ 3.443	3.412						HVACc	HVACd	HVACg								
							Electricity		\$ 0.114									×.								
							Demand 100%	kW of building	\$ 10.85		Nonth	of demand savings/year				16.00%	20.00%	-2.10%								
					-		100%	or building																		
Existing Interior Lig	shting !	Systems			Recommend Lighting Cont					Recommended Inte Lighting Efficiency In		nontr									Demand	Ener		d Calculation		y Savings
		•	Lamps	Watts		%	Present	Proposed	# Controls				Lamps	Reflect	Watts		Annual	kWh/yr.	Payback	Present	Proposed		Present	Proposed	Controls	Efficiency
Area	Qty	Present Lighting Type	/fixt	/Fixt	Control Type	Reduction	Hrs./yr.	Hrs./yr.	required	Measure Type	Qty	Proposed Lighting Type	/fixt	or ?	/Fixt	Project Cost	Savings	Savings	(Years)	kW	kW	kW Saved	kwh/year	kwh/year	kwh/year	kwh/year
Basement	6	4' 32w T8 Elec. bal.	2	59	No Change	0%	50	50	0	Linear LED Bypass	6	4' LED T8 2000 lu. 14W	2		28	\$ 338	\$ 25	9	13.4	0.4	0.2	0.2	18	8	0	g
Basement	1	100 watt Incandescent	1		No Change	0%	50	50	0	LED Relamp	1	A19 LED, 14W	1		14	\$ 12	\$ 12	4	1.0	0.1	0.0	0.1	5	1	0	4
Basement	1	A19 LED, 9W	1	9	No Change	0%	50	50	0	No change	1	A19 LED, 9W	1		9	\$0	\$0	0		0.0	0.0	0.0	0	0	0	(
Bldg. Dept.	5	4' 32w T8 Elec. bal.	2	59	No Change	0%	2,000	2,000	0	Linear LED Bypass	5	4' LED T8 2000 lu. 14W	2		28	\$ 282	\$ 56	310	5.1	0.3	0.1	0.2	590	280	0	310
Bldg. Dept. Vault	5	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	75%	2,000	500	2	Linear LED Bypass	5	4' LED T8 2000 lu. 14W	2		28	\$ 762	\$ 79	520	9.6	0.3	0.1	0.2	590	70	443	78
Records Room		4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	50%	2,000	1,000	1	Linear LED Bypass	2	4' LED T8 2000 lu. 14W	2		28	\$ 353	\$ 29	180	12.3	0.1	0.1	0.1	236	56	118	62
Tax Office		4' 32w T8 Elec. bal.	2		No Change	0%	500	500	0	Linear LED Bypass	4	4' LED T8 2000 lu. 14W	2		28	\$ 226	\$ 23	62	9.7	0.2	0.1	0.1	118	56	0	62
Rear Hallway	4	4' 32w T8 Elec. bal.	2		No Change	0%	2,000	2,000	0	Linear LED Bypass	4	4' LED T8 2000 lu. 14W	2		28	\$ 226	\$ 44	248	5.1	0.2	0.1	0.1	472	224	0	248
Hallway	2	60 watt Incandescent	1		No Change	0%	2,000	2,000	0	No change	2	A19 LED, 9W	1	+	9	\$7	\$ 37	204	0.2	0.1	0.0	0.1	240	36	0	204
Hallway	1	4' 32w T8 Elec. bal.	2		No Change	0%	2,000	2,000	0	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	_	+	28	\$ 56	\$ 11	62	5.1	0.1	0.0	0.0	118 354	56	0	62 140
Court Office	3	4' 32w T8 Elec. bal.	2	59 59	Remote Occ Sensor	25%		1,500	1	Linear LED Bypass	3	4' LED T8 2000 lu. 14W	2	+	28 28	\$ 409 \$ 353	\$ 38 \$ 32	228 208	10.7 11.1	0.2	0.1	0.1	354 236	126	89 177	140
Kitchen Side Hallway	2	4' 32w T8 Elec. bal. 75 watt Incandescent	2		Remote Occ Sensor No Change	75% 0%	2,000	500 2,000	1	Linear LED Bypass LED Relamp	2	4' LED T8 2000 lu. 14W A19 LED. 9W	1	╉╌╌╉	28	\$ 353 \$ 11	\$ 32 \$ 71	208 396	0.2	0.1	0.1	0.1	236 450	28	1//	31
Dining Room	3	25 watt Incandescent	9		No Change	0%	2,000	2,000	0	LED Relamp	1	A19 LED, 9W	8	+ +	40	\$ 11 \$ 58	\$ 71	396	1.9	0.2	0.0	0.2	450	20	0	396
Dining Room	8	PAR30 LED, 12W	1		No Change	0%	500	500	0	No change	8	PAR30 LED, 12W	0 1		12	\$ 58 \$ 0	\$ 50 \$ 0	0	1.5	0.2	0.0	0.2	48	48	0	
Dining Room		40 watt Incandescent	1		No Change	0%	10	10	0	LED Relamp	6	A15 LED, 6W	1		6	\$14	\$ 27	2	0.5	0.2	0.0	0.2	2	0	0	2
Town Clerk			2	59	Remote Occ Sensor	25%	2,000	1,500	1	Linear LED Bypass	6	4' LED T8 2000 lu. 14W	2		28	\$ 578	\$ 76	456	7.6	0.4	0.2	0.2	708	252	177	279
Clerk Office	3	4' 32w T8 Elec. bal.	2	59	No Change	0%	500	500	0	Linear LED Bypass	3	4' LED T8 2000 lu. 14W	2		28	\$ 169	\$ 17	47	9.7	0.2	0.1	0.1	89	42	0	47
Reception	1	25 watt Incandescent	3		No Change	0%	2,000	2,000	0	LED Relamp	1	A15 LED, 5W	3		15	\$ 22	\$ 21	120	1.0	0.1	0.0	0.1	150	30	0	120
Reception	2	40 watt Incandescent	1	40	No Change	0%	2,000	2,000	0	LED Relamp	2	A15 LED, 6W	1		6	\$5	\$ 24	136	0.2	0.1	0.0	0.1	160	24	0	136
Courtroom	11	PAR30 LED, 12W	1	12	No Change	0%	500	500	0	No change	11	PAR30 LED, 12W	1		12	\$0	\$0	0		0.1	0.1	0.0	66	66	0	C
Supervisor Office	3	100 watt Incandescent	1	100		0%	1,000	1,000	0	LED Relamp	3	A19 LED, 14W	1		14	\$ 36	\$ 63	258	0.6	0.3	0.0	0.3	300	42	0	258
Supervisor Office		40 watt Incandescent	1		No Change	0%	1,000	1,000	0	LED Relamp	4	A15 LED, 6W	1		6	\$ 10	\$ 33	136	0.3	0.2	0.0	0.1	160	24	0	136
Supervisor Office	3	PAR30 LED, 12W	1		No Change	0%	1,000	1,000	0	No change	3	PAR30 LED, 12W	1		12	\$0	\$0	0		0.0	0.0	0.0	36	36	0	C
Assistant Office	1	4' 32w T8 Elec. bal.	2		No Change	0%	2,000	2,000	0	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2		28	\$ 56	\$ 11	62	5.1	0.1	0.0	0.0	118	56	0	62
Assistant Office		60 watt Incandescent	1		No Change	0%	2,000	2,000	0	LED Relamp	2	A19 LED, 9W	1		9	\$7	\$ 37	204	0.2	0.1	0.0	0.1	240	36	0	204
2nd Floor Hallway		60 watt Incandescent	2	120		0%	2,000	2,000	0	LED Relamp	3	A19 LED, 9W	2		18	\$ 22	\$ 110	612	0.2	0.4	0.1	0.3	720	108	0	612
Printer Room Grants Office	2	60 watt Incandescent 4' 32w T8 Elec. bal.	1		No Change No Change	0% 0%	2,000	50 2,000	0	LED Relamp Linear LED Bypass	2	A19 LED, 9W 4' LED T8 2000 lu. 14W	1		28	\$ 7 \$ 56	\$ 14 \$ 11	5 62	0.5 5.1	0.1	0.0	0.1	6 118	1 56	0	5
Grants Office		60 watt Incandescent	2		No Change	0%	2,000	2,000	0	LED Relamp	2	A19 LED. 9W	2		20	\$ 50 \$ 7	\$ 37	204	0.2	0.1	0.0	0.0	240	36	0	204
Rec. Dept.	5	4' 32w T8 Elec. bal.	2		No Change	0%	2,000	2,000	0	Linear LED Bypass	5	4' LED T8 2000 lu. 14W	2		28	\$ 282	\$ 56	310	5.1	0.1	0.0	0.2	590	280	0	310
Finance Dept.	2	4' 32w T8 Elec. bal.	4	112	\$ \$	0%	2,000	2,000	0	Linear LED Bypass	2	4' LED T8 2000 lu. 14W	4		56	\$ 166	\$ 40	224	4.1	0.2	0.1	0.1	448	224	0	224
Assessor's Office	3	4' 32w T8 Elec. bal.	2	59	No Change	0%	2.000	2.000	0	Linear LED Bypass	3	4' LED T8 2000 lu. 14W	2		28	\$ 169	\$ 33	186	5.1	0.2	0.1	0.1	354	168	0	186
Assessor's Vault	3	4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	75%	2,000	500	1	Linear LED Bypass	3	4' LED T8 2000 lu. 14W	2	1 1	28	\$ 409	\$ 48	312	8.6	0.2	0.1	0.1	354	42	266	47
2nd Floor Hallway		4' 32w T8 Elec. bal.	2	59	Remote Occ Sensor	75%	2,000	500	1	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2		28	\$ 296	\$ 16		18.7	0.1	0.0	0.0	118	14	89	16
Bathroom	1	11w CFL Spiral Elec. bal	1		No Change	0%	250	250	0	No change	1	11w CFL Spiral Elec. bal	1		11	\$0	\$0	0		0.0	0.0	0.0	3	3	0	C
Server Room	1	4' 32w T8 Elec. bal.	2		No Change	0%	50	50	0	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2		28	\$ 56	\$4	2	13.4	0.1	0.0	0.0	3	1	0	2
Meeting Room	1	4' 32w T8 Elec. bal.	2		No Change	0%	250	250	0	Linear LED Bypass	1	4' LED T8 2000 lu. 14W	2		28	\$ 56	\$ 5	8	11.5	0.1	0.0	0.0	15	7	0	8
	115			kW exist					9	-	115		2.3	kW prop	osed					6.1	2.3	3.8	8,573	2,612	1,357	4,604
Note: bal. = ballast,	LE = e	energy efficient, STD = st	andard e	miciency,	mag. = magn	etic, Elec. =	electroni	c, CFL = com	pact fluores	cent lamp				-											5,961	ĸWN
SUMMARY OF SAVI	INGS E	BY MEASURE TYPE:		Fixture	Energy S	avings	Demand																			
					Controls	Efficiency	kW	Project	Electric			· · · · ·														
		Measure Type		Qty.	kwh/year	kwh/year	Savings	Cost	Savings	Payback (Years)	Measu	e Description														
EEM-1B		Linear LED Bypass		59		2,242	-	\$ 3,380	\$ 500	6.8		fluorescent lamps with L		s; disconn	ect ball	ast										
EEM-1C		LED Relamp		30		2,157	1.8	\$ 210	\$ 478	0.4	Screw-	n or Socket based LED larr	nps													
EEM-1L		No change		26		204	0.1	\$7	\$ 37	0.2																
EEM-10		Remote Occ Sensor		8	1,357		Ļ	\$ 1,920	\$ 155	12.4	Remote	Mounted Occupancy Sen	sor			J										
				115	1,357	4,604	3.8	\$ 5,518	\$ 1,169																	
		Gross Energy	/ Savings		5,961	kwh																				
		Net Energy	Savings		6,914	kwh	4.5	-105	gal.	\$ 1,014	net															
PAYBACK PERIOD:																										
		Estimated Cost Interior	Lighting:	.	\$ 5,518	= 5.4 year	' payback																			

CALC	ULATIO	NS FC	R EXTERIOR LIGH	TING	RETRO	OFIT																					
EM-2	Town of P	ound R	tidge - Town House														Electricity										
															U	Init cost:	\$ 0.114	/kwh									
															kW	demand	\$ 10.85										
													M	onths of	iemand	savings:	0	months/ye	ar								
	Existing Ext	terior Lig	hting Systems			Recomment	ded				Recommende	d Exteri	or										Ene		d Calculations		
						Lighting Con	trols				Lighting Efficie	ncy Im	provements									Demand		Tota	al Use	Energ	y Savings
ine #	Area	Qty	Present Lighting Type	Lamps	Watts	Control	%	Present	Proposed	# Controls	Measure Type	Otv	Proposed Lighting	Lamps	Reflect	Watts	Project	Annual	kWh/yr.	Payback	Present	Proposed	kW	Present	Proposed	Controls	Efficiency
.iiie #	Alea	Quy	Present Lighting Type	/fixt	/Fixt	Туре	Reduction	Hrs./yr.		required	measure rype	Quy	Туре	/fixt	or?	/Fixt	Cost	Savings	Savings	(Years)	kW	kW	Saved	kwh/year	kwh/year	kwh/year	kwh/year
1	Front		LED area light, 28W	1		No Change		4,380	4,380	0	No change	3	LED area light, 28W	1		28	\$0	\$0	0		0.1	0.1	0.0		368	0	
2	Side		100 watt Incandescent	2		No Change		100	100	0	LED Relamp	2	PAR30 LED, 12W	2		24	\$ 42	\$4		10.6	0.4	0.0	0.4	40	5	0	
3	Front		15w CFL Spiral Elec. ba	1		No Change	0%	1,000	1,000		No change	2	15w CFL Spiral Elec.	1		15	\$ 0	\$0	0		0.0	0.0	0.0	30	30	0	
		7			0.5	kW				0		7				0.2	kW				0.5	0.2	0.4	438	403	0	
																										35	kwh
	SUMMARY	OF SAV	INGS BY MEASURE TYPE:																								
					Fixture	Energy	Savings	kW																			
			Measure Type		Otv.	Controls	Efficiency	Reduction	Project	Annual	Payback		ure Description														
			weasure type		Qty.	kwh/year	kwh/year	Reduction	Cost	Savings	(Years)	measu	ire Description														
			LED Relamp		2		35	0.4	\$ 42	\$4	10.6]										
					2	0	35	0.4	\$ 42	\$4	10.6																
						35	kwh																				
	PAYBACK P	ERIOD:																									
			Estimated Cost Exterior Lig	ghting:		\$42	= 10.6 yea	r payback																			
			Annual Energy Savings (kV	Vh + kW):)	\$4																					

	TOWITOT	Pound Rido		400		
NPUT DATA:		100%	of Building to be	Sethack		
NFOT DATA.		100%	Current	Proposed		
Heating T Setp	point:	Occupied	70	70	deg. F.	
Cooling T Cotr	oint:	Unoccupied	70 74	66 74	deg. F.	
Cooling T Setp	ionn.	Occupied Unoccupied	74	74 78	deg. F. deg. F.	
HVAC Schedul	e	Occupied	40.0	40.0	Hours per week	
		Unoccupied	128.0	128.0	Hours per week	
Q internal gair	ns:	Occupied	44,988	44,988	Btuh	
Q internal gair		Unoccupied Schedule	16,075 40	16,075 40	Btuh Hours per week	
3LC:	15.	Occupied	1,840	1,840	Btuh/deg. F.	
excludes DOA	AS)	Unoccupied	2,165	2,165	Btuh/deg. F.	
		Fuel Data	Heating	Cooling		
		Type: Units:	Oil - No. 2 gal.	Electricity	Economizer? 0.0	
		Unit cost:	\$ 3.443	\$ 0.114	0.0	
		BTU/unit	138,000	3,412		
		ficiency/ COP:	78.0%		Avg. COP. EER:	
CALCULATION	IS:		10 h (100.0%	of bldg. is cooled	
Current		White Plains,				
Bin Mid Pt.	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	Cooling
	Hours	Hours	Loss BTUH	Loss BTUH	Use gal.	Energy kwh
2.5	0	17 41	79,245 70,043	130,081 119,255	21	(
12.5	6	84	60,840	108,429	88	
17.5	39	179	51,638	97,602	181	(
22.5 27.5	52 97	421 332	42,436 33,233	86,776 75,949	360 264	
32.5	97 142	332 509	24,031	65,123	340	
37.5	148	553	14,828	54,297	299	
42.5 47.5	117 179	661 685	5,626 0	43,470 32,644	273 208	
47.5	179	457	(5,417)	21,817	93	8
57.5	196	615	(14,620)	10,991	63	31
62.5	214	834	(23,822)	165	1	56
67.5 72.5	220	626 326	(33,025) (42,227)	(2,001) (12,827)	0	94
77.5	152	182	(51,429)	(23,654)	0	1,34
82.5	100	113	(60,632)	(34,480)	0	1,10
87.5 92.5	42	29 6	(69,834) (79,037)	(45,306) (56,133)	0	47
97.5	3	2	(88,239)	(66,959)	0	4
102.5	0	0	(97,442)	(77,786)	0	(
107.5 112.5	0	0	(106,644) (115,847)	(88,612) (99,438)	0	(
117.5	0	0	(125,049)	(110,265)	0	(
	8,760	hours			2,237	6,601
roposed		White Plains,	40 hrs./week			
Bin Mid Pt.	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	Cooling
2.5	Hours 0	Hours 17	Loss BTUH 79,245	Loss BTUH 121,420	Use gal. 19	Energy kwł
7.5	2	41	70,043	110,594	43	
12.5	6	84	60,840	99,768	81	
17.5	39	179 421	51,638 42,436	88,941 78,115	167 326	
27.5	97	332	33,233	67,288	237	
32.5	142	509	24,031	56,462	299	
37.5 42.5	148 117	553 661	14,828 5,626	45,635 34,809	255 220	
42.5	117	685	5,626	23,983	153	
52.5	136	457	(5,417)	13,156	56	8
57.5 62.5	196 214	615 834	(14,620)	2,330	13	31 56
62.5	214	626	(23,822) (33,025)	0	0	80
72.5	225	326	(42,227)	(4,166)	0	1,20
77.5 82.5	152	182 113	(51,429)	(14,992) (25,819)	0	1,17
82.5	100 42	29	(60,632) (69,834)	(36,645)	0	44
92.5	18	6	(79,037)	(47,472)	0	19
97.5 102.5	3	2	(88,239) (97,442)	(58,298) (69,125)	0	4
102.5	0	0	(106,644)	(79,951)	0	
112.5	0	0	(115,847)	(90,777)	0	
117.5	0 8 760	0 bours	(125,049)	(101,604)	0	5.92
	0,700	hours			1,869	5,828
			Present	Proposed	Savings	
		Heating	2,237	1,869	368	gal. kwh
		Cooling Annual Energ	6,601 v \$	5,828	\$ 1,354	KWII
		& PAYBACK PI			φ <u>1</u> ,554	
		Material				
ltem		\$/unit	Labor \$/unit	Quantity	Total	
Ni-fi thermos	tat	\$ 200	\$ 100	9	\$ 2,700	
					\$0	
					\$ 2,700	
	Implement	tion Cort		\$ 2,700	= 2 year payba	alı

EEM-4	Town of Po	ound Ridge -	Town House			
Surface to be	insulated:	Roof	Walls	(I		
Area:		3,589	3,497	sqπ		
Present R valu		10.0	3.7			
Revised R valu		38.0	10.0			
Present U fact		0.100		Btuh/sq ft-deg F		
Revised U fact		0.026		Btuh/sq ft-deg F		
Present U x Ai		359	950		UA Total present	
Proposed U x	Area	94	350	444	UA Total propos	ea
		Occurried		Fuel Date	lleating	Cooling
	-	Occupied	Unoccupied	Fuel Data		Cooling
Heating Setpo		70	70	Туре:	Oil - No. 2	Electricity
Cooling Setpo		74	74	Units:	gal.	kwh
Q internal gai		44,988	16,075	Unit cost:		\$ 0.114
BLC (Btuh/deg		1,840	2,165	BTU/unit		3,412
Г Balance (°F.)		45.6	62.6	Efficiency/ COP:	78.0%	263.8%
Г Balance = Т	Setpoint - (Q in	ternal gains / BL	C)	EER:		9.0
Bin Mid-Pt.	Occupied	Unoccupied	Change in Occupied	- ·	Heating Savings	Cooling
	Hours	Hours	Heat Loss	Heat Loss	gal.	Savings kwh
2.5	0	17	58,393	58,393	9	C
7.5	2	41	54,068	54,068	22	(
12.5 17.5	6 39	84 179	49,742 45,417	49,742 45,417	42 92	
22.5	52	421	43,417	43,417	92 181	
22.5	97	332	36,766	36,766	181	
32.5	142	509	32,441	32,441	196	(
37.5	148	553	28,115	28,115	183	(
42.5	117	661	23,790	23,790	172	(
47.5	179	685	0	19,464	124	(
52.5	136	457	0	15,139	64	C
57.5 62.5	196 214	615 834	0	10,814	62	C
67.5	214	626	0	6,488 0	50 0	
72.5	225	326	0	0	0	(
77.5	152	182	(3,028)	(3,028)	0	112
82.5	100	113	(7,353)	(7,353)	0	174
87.5	42	29	(11,679)	(11,679)	0	92
92.5	18	6	(16,004)	(16,004)	0	43
97.5	3	2	(20,329)	(20,329)	0	11
102.5 107.5	0	0	(24,655) (28,980)	(24,655) (28,980)	0	(
107.5	0	0	(33,306)	(33,306)	0	
117.5	0	0	(37,631)	(37,631)	0	(
	8,760	hours		Energy Savings:	1,343	432
					\$ 4,623	\$ 49
MPLEMENTA	TION COST & F	PAYBACK PERIO	D:			
		Material & Labor	·			
	ltem	(\$ / sq ft)	Quantity	Total		
	Roof	\$ 5.00	3,589	\$ 17,944		
	Walls	\$ 10.00	3,497	\$ 34,974		
		\$ 0.00	7,086	\$ 0		
	Implementatio	nn Cost [.]	\$ 52,918	= 11.3 year payback		

EM-5	Town of Pound	Ridge - Tow	n House			
				Type:	Oil - No. 2	
				Units:	gal.	
				Unit cost:	\$ 3.443	/gal.
			Hea	t Content of Fuel		Btu/gal.
				ustion Efficiency:	78%	, 8
DATA:						
<u></u>		Occupied	Unoccupied			
	T Setpoint:	70	70	degrees F		
	Q internal gains:	44,988	16,075	Btuh		
	BLC:	1,840	2,165	Btuh/degree F		
	T Balance:	45.6	62.6	degrees F		
	T Balance = T Setpo			degreest		
	i bulunce – i Scipe					
Slazing In	formation					
JIGTILIR III		Glazi	ng 1	Glaz	ng 2	
		Double glazed w		Single glazed wi	-	
	Present Conditions	Double glazed w		Single glazed WI	1.20113	
	Present Area:	96	sq ft	409	sq ft	
	U factor:		Btuh/sq ft-deg		Btuh/sq ft-deg	Į
	Crack Length:		feet		feet	
	Present Infiltration:		cfh		cfh	
		Double glazed		Double glazed	-	
	Proposed Condition	windows	casement	windows	casement	
	Proposed Area:		sq ft		sq ft	
	New U factor:		Sq IL Btuh/sq ft-deg		Sq II Btuh/sq ft-deg I	I =
			feet		feet	
	New Crack Length:					
	Proposed Infiltration:	10	cfh	10	cfh	
					Average	
	Bin Data for White	Plains, 40 hrs./w	eek		Average	_
					O.A. Temp	Temp
		TCotroint	T Delevee	Accum	below	Difference
	Occupied	T Setpoint 70	T Balance 45.6	Hours	T Balance	(T Set- Avg OAT) 37.3
	Occupied	70	62.6	603 E 399	32.7 43.2	26.8
	Unoccupied	70	02.0	5,388	43.2	20.8
CALCULAT) (Ana David II	Aug = 1 = 612	1:	
	Conduction Savings					
	Infiltration Savings					rs x Temp Differei
	Energy Cost Saving	s = (Energy Savin	gs / Conversion	Factor) x (Unit co	st / Efficiency)	
		Conduction	Infiltration	Total	Total Annual	Energy
		Savings	Savings	Savings	Fuel Savings	Cost Savings
	Winter	(Btu/year)	(Btu/year)	(Btu/year)	(gal./year)	(\$/year)
	Occupied	7,169,000	964,000	8,133,000	76	\$ 260
	Unoccupied	46,162,000	6,205,000	52,367,000	486	\$ 1,675
	Annual Savings:	53,331,000	7,169,000	60,500,000	562	\$ 1,935
MPLEME	NTATION COST & PAY	BACK PERIOD:				
		Material & Labor				
Item		\$ / sq. ft.	Quantity	Total		
			0	\$ 0		
		\$ 90	409	\$ 36,774		
		Implementation	Cost:	\$ 36,774	= 19 year pay	back

EM-6	Town of Pound Ridge - T	own House				
nput						
٦	Туре	Units	Unit cost	BTU/Unit	Efficiency	
	Electricity	kwh	\$ 0.114	3,412	266%	
Present	Annual Cooling Consumption:	6,955	kwh/ year			
	Example Ducts Duct length 1:	10	feet			
	Duct perimeter 1:		inches			
	Duct length 2:		feet			
	Duct perimeter 2:		inches			
	Duct temperature:	55	F			
	Ambient temperature:	85	F			
	AC EFLH		hours per year			
	Hours per year duct is cool:		hours per year	•		
	Proposed insulation thickness	2	inches			
Calculations						
	• Furnace run time = heating fuel	use / furnace inn	ut canacity			
	Hours per year duct is hot = Furi					
	Heat Loss = Heat Loss Factor * (I			uct Aroa * H	ours Por Vo	ar Duct l
				utt Alea H	ouis rei te	
	Energy Savings = Existing Heat L	-				
	Energy Cost Savings = (Energy S	-	on Factor) x (U			
	Natural convection heat transfer			0.90	Btu/hr/SF/	F
ŀ	Assumes fiberglass insulation, k					
	<u>_</u>	=.35 Btu-In/Nr/F/	′ft2			
	Duct area	120	square feet	Duglug	1.1	
E	Duct area Existing heat loss factor	120 0.90	square feet Btuh/SF/°F	R-value:	1.1	
E	Duct area Existing heat loss factor Existing heat loss	120 0.90 -2,065,717	square feet Btuh/SF/°F Btu per year			
E F	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor	120 0.90 -2,065,717 0.15	square feet Btuh/SF/°F Btu per year Btuh/SF/°F	R-value: R-value:	1.1	
E E F	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss	120 0.90 -2,065,717 0.15 -336,280	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year			
E F F E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year			
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs			
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs			
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings Energy cost savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs			
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190 \$22	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs	R-value:		
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings Energy cost savings Energy cost savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190 \$22	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs	R-value:	6.8	
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings Energy cost savings Energy cost savings Energy cost savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190 \$22	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs //aterial & Labo (\$ / sq ft)	R-value: or Quantity	6.8 Total	
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings Energy cost savings Energy cost savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190 \$22	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs Material & Labo (\$ / sq ft) \$10.00	R-value: or Quantity 120	6.8 Total \$1,200	
E F F E E	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings Energy cost savings Energy cost savings Energy cost savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190 \$22	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs Material & Labo (\$ / sq ft) \$10.00	R-value: or Quantity	6.8 Total	
E F F E mplementa	Duct area Existing heat loss factor Existing heat loss Proposed heat loss factor Proposed heat loss Energy savings Energy savings Energy cost savings Energy cost savings Energy cost savings	120 0.90 -2,065,717 0.15 -336,280 1,729,438 190 \$22	square feet Btuh/SF/°F Btu per year Btuh/SF/°F Btu per year Btu per year kwhs Material & Labo (\$ / sq ft) \$10.00	R-value: or Quantity 120	6.8 Total \$1,200 \$1,200	years

EEM-7	Town	of Pound	Ridge - Town	House					
Input Data									
	Fuel Inf	ormation			Type:	Units:	Unit cost:	BTU/unit	Efficiency
				ating System	Oil - No. 2	gal.	\$ 3.443	138,000	78%
				DHW System	Oil - No. 2	gal.	\$ 3.443	138,000	789
					Type #1	Type #2	Type #3		
	Fluid				Hot Water	DHW	DHW		
	Pipe Ma	aterial			Dull Copper	Dull Copper	Dull Copper		
		O.D., inches	(d)		2.00	0.50	1.00		
		Total Length,			10	25	1.00		
	Fluid Te		side Pipe, °F (Ts)		160	123	123		
		t Temperatur			65	65	65		
		Operating Ho	, , ,		603	8,760	8,760		
	,		n Thickness, inches		2.0	0.5	1.0		
			uctivity - "k" (Btu-in		0.260	0.250	0.250		
Heat Loss	- Bare Pi	ре							
	C factor				1.016	1.016	1.016		
	emissiv	ity based on p	ipe material		0.44	0.44	0.44		
	Outside	Radius Pipe,	inches (R	i)	1.00	0.25	0.50		
	h conve	ction, Btu/hr	 s.f. pipe surface 	area -°F	1.26	1.51	1.31		
	h radiat	ion, Btu/hr - s	.f. pipe surface ar	ea - °F	0.57	0.51	0.51		
	h total				1.83	2.02	1.83		
	Pipe are	ea, sq ft/lin ft	of pipe		0.523	0.131	0.262		
	Q bare,	Btu/hr-lin ft			91	15	28		
Heat Loss	- Insulat	ed Pine							
11000		Radius Insula	tion. inches (R	(s)	3.00	0.75	1.50		
			uter area of insula	,	7.5	17.6	8.8		
			/lin ft of pipe		1.6	0.4	0.8		
		Btu/hr-lin ft	,		11.8	6.9	6.9		
	,								
Avoided E	nergy Lo	SS							
		Loss - mmBti	ı/year		0.5	3.4	2.4		
	Propose	ed Loss - mmE	<u>Stu/year</u>		0.1	1.5	0.6		
	Avoided	l Loss - mmBt	u/year		0.5	1.9	1.8		
Total Avoi	ded Fue	l Consumptio	n						
		39		Units Saved	4	17	17		
		Oil - No. 2		Fuel Type	Oil - No. 2	Oil - No. 2	Oil - No. 2		
			\$ 133	\$/year	\$ 15	\$ 59	\$ 58		
Formulae:									
Based or			mentals Handboo						
			1/d)^0.2}x{(1						
			vity x 0.1713 x 10	^ -8 x [(Ta + 4	460) ^ 4 - (Ts ·	+460) ^ 4]} / (Ta - Ts)		
	Q bare :	= h total x Pip	e Area x (Ts - Ta)						
	Q i = (T	s - Ta) / { [Rs	x (ln (Rs / Ri)] / l	< }					
	Q insul	= Q i x Insul A	rea						
	Total Av	voided Consul	nption = (Q bare -	Q insul) x To	tal length of r	pipe x Annual	Operating Ho	urs	
Dauba - L. D				,	5		,		
Payback P	erioa:	luon lo artente d	ian Cast	6.242	2.6				
		Implementat Annual Energ		\$ 349 \$ 133	= 2.6 years	раураск			

EEM-8	Town of Pound R	idae - T	own Ho	use					
DATA AND	CALCULATIONS:						Electricity c	osts:	
							kWh:	\$ 0.114	per kWh
Formulae:							Demand:	\$ 10.85	per kW
	Demand kW = (Qty x H				% Efficiency				
	Annual kWh = Demand								
	Demand \$ Savings = (P			•	-	(Monthly d	emand charg	ge	
	kWh \$ Savings = (Prese	ent kvvn -	New KVVN) x Cost per	ĸvvn				
					N 4 - 4		A	N.A.a.t.a.v.	N A a vehice a
			otor		Mot		Annual		Months o
		Nominal		Loading	Efficie	ency	Run H	lours	Demand
#	Description	HP	Qty	vs. Nom.	Present	New	Existing	New	Savings
1	CHW/HHW Pump	1/3	1	75%	68.0%	68.0%	4,380	2,190	0
2	CHW/HHW Pump	1/2	1	75%	68.0%	70.0%	4,380	2,190	0
3									0
4									0
5									0
6								·	0
		Total	Dema	and kW	Annua	l kWh	Motor	\$ Savings	Cost
#	Description	BHP/	Present	New	Present	New	Туре	Total	\$
1	CHW/HHW Pump	0.2	0.3	0.3	1,189	595		\$ 68	
2	CHW/HHW Pump	0.4	0.4	0.4	1,802	875		\$ 106	
3									
4									
5									
6									
		0.6	0.7	0.7	2,991	1,470		\$ 173	\$0
	drip-proof				and Savings:		kW	-	
FEFC = total	ly enclosed fan-cooled		Annu		and Savings:		kW	\$0	
				Annual l	Wh Savings:	1,521	ĸWh	\$ 173	
					Total:			\$ 173	
	TATION COST AND PAYB		- חנ						
			<u>, .</u>						
	Implementation Cost			\$300	= 1.7 years	payback			
	Annual Energy Savings			\$173	;card				

CALCULA	TIONS TO REPLAC	E CONDEN	SING UNITS				
EEM-9	Town of Pound Ridg	e - Town Ho	use				
INPUT DATA				kWh:	·	per kWh	
				Demand:		per kW	
				ths /yr. demand:			
			Coinci	dence Factor CF:	0.80		
	con Comunal	Main Office	م ما دانه ام				
Location or Ar	ea Served		Addition				-
Unit Tag		Trane	Lennox				_
tons/unit		3.0	3.5				
# of Units	an (JD)	2	1				_
Unit Type (AC	or HP)	AC	AC 107				
EFLH cool		580	497				
Present Efficie	ency FFR *	9.0	9.0				-
Present Efficie	-	10.0	10.0				
		10.0	10.0				_
Proposed Effi	•	13.0	13.0				_
Proposed Effi	ciency SEER **	17.0	17.0				
							-
CALCULATION							Sum
Present kwh/		4,173	2,087				6,260
Present kwh/	-	-	-				-
	n/year Cooling	2,455	1,227				3,682
Proposed kwr	/year Heating	-	-				-
	Efficiency $\Delta kWh =$	1,718	859				2,578
	Economizer $\Delta kWh =$	-	-				(
	Demand Savings Present kW (peak)	6.4	3.7				10.1
	Proposed kW (peak)	4.4	2.6				7.0
	ΔkW =	2.0	1.1				3.1
FORMULAE:							
	ndard Approach for Estimat	ting Energy Savii	ngs-Residential, N	Aulti-Family and	Commercial/Ir	ndustrial Measur	es:
	$\Delta kWh eff cooling =$						
	$\Delta kWh eff heating =$						
	$\Delta kWh econ =$	units x tons/uni	t x kwh economi	zer savings per to	on (from Tech	Manual Append	ix J)
	ΔkW =	units x tons/uni	t x (12/EERbase-	12/EERee) x CF			
			ling/kWpeak coc	ling without eco	nomizer (from	Appendix G)	
	* Present EER and SEER ar						
	** Proposed EER and SEEF	R are based on N	IYSECCC (IECC-20	015)			
Evi	isting Energy Consumption	6 260	kwh/yr	10.1	kW peak		
	osed Energy Consumption		kwh/yr		kW peak		
TTOP	Annual Energy Savings		kwh/yr		kW peak		
		2,370		5.1	kti peak		
IMPLEMENTA	TION COST AND PAYBACK	PERIOD:					
	Donlogoment sections:	atad at	¢ 2.000	بالملحم المحمد الم	of accession		
	Replacement cost is estim	ated at	\$ 2,000	per installed tor	i of capacity		
	Implementation Cost		\$19,000	= 41 years pa	whack		

EEM-10	Town of Pound Rid	dge - Town	House				
INPUT DATA:							
N 1 4			2 2 2 2				
	al Heating Fuel Consump	tion:	2,232				
% of I	Building Served by Boiler		86%				
	Boiler Fuel Use		1,918	gal.s			
		. .					
	Fuel Data	Present		Proposed			
	Туре:	Oil - No. 2		Oil - No. 2			
	Units:	gal.	4	gal.	<i>,</i> .		
	Unit cost:	\$ 3.443	/gal.	\$ 3.443	/gal.		
	BTU/Unit	138,000	Btu/gal.	138,000	Btu/gal.		
	Boiler Type	Present		Proposed			
	Boiler Firing Rate		kBtuh Input	-	kBtuh Input		
	Combustion Efficiency	85.0%	•		annual avg.		
	Jacket Losses		of capacity		of capacity		
	Boiler Capacity		kBtuh Outpu		kBtuh Output		
	Off-cycle Flue Losses		of capacity		of capacity		
	Boiler is hot when OAT			65			
	Hours/ Yr. Unit is Hot			5,052			
		5,052					
	Off-Cycle Hours/Year	3,972		4,303			
	Standby Losses		MMBtu		MMBtu		
	Off-Cycle Flue Losses		MMBtu		MMBtu		
	Useful Heat Output	163	MMBtu	163	MMBtu		
CALCULATIO	NC.						
	e Losses = Boiler kBtuh Ou	1000 v			c Off Cycle por	Voar / 1 000	000
-	= Boiler kBtuh Output x 2	-	-			fear / 1,000,	000
) = Boller KBturl Output X - Dutput = Htg Fuel Use x B			•		ssos laskat	
		l o per unit x	Present Effici	ency / 1,000,00	0 - Off Cycle Los	sses - Jacket	Losses
-	nual Fuel Consumption =	-+ (ianay y 1 000 00			
Proposed Sta	andby Losses + Useful He	at Output) / P	roposed Emo	liency x 1,000,00	JU / BTU per Un	lit	
			م مربعا ا		Annual		
			Annual Fuel		Annual		
					Cost		
	<u> </u>		Consumption	1	¢ c coo		
	Present:		1,918	gal.	\$ 6,603		
	Proposed:		1,918 1,367	gal. gal.	\$ 4,706		
			1,918	gal. gal.			
	Proposed: Annual Savings:		1,918 1,367	gal. gal.	\$ 4,706		
MPLEMENTA	Proposed:		1,918 1,367	gal. gal.	\$ 4,706		
MPLEMENT	Proposed: Annual Savings:		1,918 1,367	gal. gal.	\$ 4,706		
MPLEMENT/	Proposed: Annual Savings: ATION COST & PAYBACK	PERIOD:	1,918 1,367 551 Material	gal. gal. gal. Labor	\$ 4,706 \$ 1,897 Total		
MPLEMENT/	Proposed: Annual Savings: ATION COST & PAYBACK Item	PERIOD: Quantity 1	1,918 1,367 551 Material \$ 12,500	gal. gal. gal. Labor \$ 2,500	\$ 4,706 \$ 1,897 Total \$ 15,000		
<u>MPLEMENT</u>	Proposed: Annual Savings: ATION COST & PAYBACK Item New Boiler	PERIOD: Quantity	1,918 1,367 551 Material	gal. gal. gal. Labor	\$ 4,706 \$ 1,897 Total \$ 15,000 \$ 0		
<u>MPLEMENT</u>	Proposed: Annual Savings: ATION COST & PAYBACK Item	PERIOD: Quantity 1	1,918 1,367 551 Material \$ 12,500	gal. gal. gal. Labor \$ 2,500	\$ 4,706 \$ 1,897 Total \$ 15,000		
MPLEMENT/	Proposed: Annual Savings: ATION COST & PAYBACK Item New Boiler	PERIOD: Quantity 1	1,918 1,367 551 Material \$ 12,500	gal. gal. gal. Labor \$ 2,500	\$ 4,706 \$ 1,897 Total \$ 15,000 \$ 0	hack	

BE-1	Town of Pound Ridg	ge - Town Ho	use		
INPUT DATA:					
INFOT DATA.		Present Fuel		Proposed Fuel	
	Fuel:	Oil - No. 2		Electricity	
	Units:	gal.		kwh	
	Fuel Cost:	-	per gal.		per kwh
	BTU / unit:		Btu per gal.		Btu per kwh
	kW Demand cost:		per kW	\$ 10.85	
	Average kW demand:	0.0		1.6	
	Demand Diversity:	33%		90%	
	Net kW Demand Savings:	-	kW per month		kW per month
	Months of demand:	12	per year	12	per year
	wonths of demand.	12		12	
Annual DHW	Consumption:	Present		Proposed	
	Hot Water Usage:		Gallons/person		Gallons/person
	Number of persons:		(estimate)		(estimate)
	Days of Usage:		per year		per year
	Hours of Usage per Day:		hours		hours
	Average inlet water Tem	-	degrees F		degrees F
	Average hot water temp:		degrees F		degrees F
	Average not water temp.	125	degrees	125	degrees
Storage Tank	Losses:	<u>Present Tank</u>		Proposed Tank	
	Tank U factor:		Btu/SF/Hour	0.09	Btu/SF/Hour
	Height of Tank:		inches	15.0	inches
	Diameter of Tank:		inches	10.0	inches
			gallons/tank	3	gallons/tank
	# of Tanks		Qty.	1	Qty.
	Hours Tank is Hot:		Hours	8,760	
	Water Temperature:		Deg. F.	123	
	Ambient Temperature:		Deg. F.	65	
Recirculation	Losses:		of boiler capacity =		BTUh
		0	hours/year	8,760	hours/year =
Poilor lackat (& Flue Losses:				
DONEL JACKEL		245 000	DTUU	0 5 2 2	DTUU
	Burner Input	245,000	DIUN	8,533	
	COP:	0.78		1.00	
	Boiler Output Capacity		BTU output		BTU output
	Jacket & Flue Losses:	1.5%	of boiler capacity	0.0%	of boiler capacity
	Boiler is Hot:	8,760	hours/year	8,760	hours/year =
	10.				
CALCULATION	<u>v5:</u>	Dunariat		Drana	
		Present		Proposed	
	Consumption Energy:		BTU output rqd/yr		BTU output rqd/y
	Tank Energy Losses:		BTU/year		BTU/year
	Recirculation Losses:	0	BTU/year	0	BTU/year
	Boiler Jacket Losses:	25,110,540	BTU/year	0	BTU/year
	Output BTU/Year	36,172,065		11,263,024	
	Annual Fuel Consumption	336	gal.	3,301	kwh
	Demand		billed kW /yr.		kW
	Annual Fuel Cost	\$ 1,157	//··	\$ 567	
	Annual Savings:	336	gal	\$ 590	per year
	Annual Savings.	(3,301)	-	3 350	per year
			billed kW /yr.		

BE-2	Town of Pound Ridg	e - Town Hous	se			
	.		Fuel Information	1		
Building Information	Assembly			Heating	Cooling	
Location	NYC	Climate Zone 4	. Type:	Oil - No. 2	Electricity	
Portion of Building HP will serve:	100%		Units:		kwh	
Building Heating Load (BHL)	146,157	BTU/h	Unit cost:		\$ 0.114	/kwh
Building Cooling Load (BCL)		BTU/h	BTU/unit		3,412	/kwh
BEFLHheating		Hours	Heating Eff.		\$ 10.85	
BEFLHcooling		Hours	CO2		1.16	lbs/unit
Existing System	0/0	110013		22.40	1.10	1057 41112
Is baseline heating system electric?		Ν				
Is baseline heating system fossil fue	12	Y				
If yes, will it remain in place in the e		N				
in yes, will it remain in place in the e		IN				
Present Heating System	Boiler, Hot Water, Oil Fired	l < 300 kBTU/h				
Present Cooling System	Split System – Air Conditioner	(<65 kBTU/h)				
% of Portion to be served by ASHP t	hat is presently cooled	100%				
Proposed System						
Does proposed ASHP require supple	montal resistance heat?	Y				
ASHP Type	Central Ducted	-				
	Whole	(the ACUD will as		4:		
ASHP Application		(the ASHP will m	leet all of the hea	iting load)		
Control Type	Integrated/Modulating					
Heating Capacity		BTU/h at 17°F	1.0	HP Sizing R	atio	
Energy Efficiency Ratio		EERee				
Seasonal Energy Efficiency Ratio		SEER				
Heating Season Performance Factor	10.0	HSPF				
Resulting system to be modeled	Scenario	1d				
	Central Ducted ASHP w	ith Integrated/	Modulating cor	ntrols sized	to 100%	
Adjusted Efficiency Values	Baseline	Energy Efficient				
SEERbaseline	9.0	14.4	EERseason,ee	1.520) с	cooling offse
EERbaseline	9.0	13.1	EERee	0.859) d	cooling slope
COPseason, baseline	1.00	2.52	COPseason, ee	0.824	1 a	heating offse
FElecHeat		1.00	FElecHeat,new	0.777	7 b	heating slope
EFFbaseline	0.78	1.00	Fload,cooling			
FFuelHeat	1.00	1.00	Fload,heating			
		1.00	Fload, heating, Fu		0.69	CF
		1.00	Fload,heating,El	ecHeat	. .	<u> </u>
		Energy Effects	C	··	Savings	Savings
	Baseline	Energy Efficient		Units	\$	CO2 Lbs/yr.
Cooling Electric Use (kWh/yr.)	6,953	4,344	2,609			
Heating Electric Use (kWh/yr.)	0	28,017	(28,017)		4	
Total Electric Use (kWh/yr.)	6,953	32,361	(25,408)		(\$ 2,897)	(29,473
Peak Demand (kW)	7.2	4.9		kW	(\$ 611)	
Fossil Fuel Energy Use (MMBTU)	309	0		MMBtu	 	
Fossil Fuel Energy Use : gal.	2,237	0	2,237	gal.	\$ 7,702	50,285
Annual Energy Costs	\$ 8,832	\$ 4,638	\$ 4,194		\$ 4,194	20,812
Estimated Project Cost	\$ 3,872	perton =	\$ 47,160	11	l year payba	ck

BE-3	Town of Pound Ridge	e - Town Hoເ	use			
			Fuel Informati	on		
Building Information	Assembly			Heating	Cooling	
Location	NYC	Climate Zone 4	Type:	Oil - No. 2	Electricity	
Portion of Building HP will serve:	100%		Units:	gal.	kwh	
Building Heating Load (BHL)	146,157	BTU/h	Unit cost:	\$ 3.443	\$ 0.114	/kwh
Building Cooling Load (BCL)	93,386	BTU/h	BTU/unit	138,000	3,412	/kwh
BEFLHheating	1,647	Hours	Heating Eff.	85%	\$ 10.85	/kW
BEFLHcooling	670	Hours	CO2	22.48	1.16	lbs/unit
Existing System						
Is baseline heating system electric?	Ν					
Is baseline heating system fossil fuel?	Y					
Present Heating System	Boiler, Hot Water, Oil Fired	< 300 kBTU/h				
Present Cooling System	Split System – Air Conditioner	(<65 kBTU/h)				
% of Portion to be served by GSHP tha	at is presently cooled	100%				
Proposed System						
GSHP Loop Type	Closed Loop	GLHP				
GSHP Compressor Type	Variable-Speed	0.40	Capacity Ratio			
Estimated Pump Power	45 watts per ton					
Pumping Control Strategy	Variable					
Heating Capacity	150,000	BTU	rating condition	n		
Energy Efficiency Ratio Full Load	17.0	EER GLHP,full	77	° EWT		
Energy Efficiency Ratio Part Load	22.0	EER GLHP,par	68	° EWT		
Heating COP Full Load	3.6	COP GLHP,ful	32	° EWT		
Heating COP Part Load	4.1	COP GLHP,pa	41	° EWT		
Adjusted Efficiency Values	Baseline	Energy Efficient				
	9.0		1			
EERseason, baseline		18.87	EERseason,ee			
EERpeak,baseline		17.0	EER GSHP, full			
COPseason, baseline	1.00	3.68	COPseason,ee			
FElecHeat		0.00				
EFFbaseline	0.85	0.69	CF			
FFuelHeat	1.00				Caudanaa	Cauda an
	Baseline	Energy Efficient	Savings	Units	Savings \$	Savings CO2 Lbs/yr.
Cooling Electric Use (kWh/yr.)	6,953	3,316		kWh	Ļ	CO2 L03/ y1
Heating Electric Use (kWh/yr.)	0,933					
Total Electric Use (kWh/yr.)	6,953	22,484	(19,188) (15,531)		(\$ 1,771)	(18,016
Peak Demand (kW)	7.2	3.8		kW	(\$ 1,771)	
Fossil Fuel Energy Use (MMBTU)	283	0		MMBtu	(عرب د)	
Fossil Fuel Energy Use : gal.	203	0 0		gal.	\$ 7,067	46,144
Annual Energy Costs	\$ 8,535	\$ 3,390	\$ 5,145	15 ^{01.}	\$ 5,145	28,128
Estimated Project Cost		per ton =	\$ 145,730		year payback	

Appendix D

Assumptions/Data Used to Develop Energy and Dollar Savings Figures

Building and	Occupancy I	nformation							
	C 420	an survey for a t		Avg. # of	Heating	Cooling	% of base e	electricity use	resulting in
Floor Area:	6,420	square feet		occupants	Setpoint	Setpoint	int	ternal heat gai	ns
		c	lays /occupied	20	70	74	days	100%	
			ts/unoccupied	0	70	74	nights	100%	
			# of computer	20		-			
Interior lighting	, people and oc	cupied levels of	f internal loads	occur for	40	hours per we	ek		
		Ele	ectricity use at	night is usually	40%	of the usual e	lectricity use d	uring day peri	ods
	(This results in a	n average day	time kW that is	89%	of the peak m	etered kW)		
Heating Syst	em Informat	ion							
		% (of bldg. served	COP heat	EER	Heat kBTUH	Heating Fuel	Efficiency	
Primary system	Non-Condensi	ng Boiler	100%	0.85	9.00	245	Oil - No. 2	85.0%	Et
Secondary:			0%						Et
occontact y.	100%	of building is a		Does the coolir	a system have	e economizer?			
	10078	of building is a	ii conditioned		ig system nav	eeconomizer:			
				Fuel				_	
Describe the <u>di</u>	ect outside air	or <u>central mak</u>	e-up air syster	n:		Eff.		EER for DOAS	
					cfm outside a				
					hours / week		heat recovery	efficiency	
Domestic Ho	t Water	Fuel	Efficiency						
DHW system er	argy type	Oil - No. 2	85%	ls thora	a numn to cir	culate DHW?	No		
Hot Water usag		1.0	gallons per	person	/ day for	20	persons on	250	days/year
not water usug	C 15	1.0	guions per	person		20	persons on	230	uuys/yeur
Weather & S	chedule Info	rmation							
							for TDM.	N	
Select nearest v				WHITE I			for TRM:		YC
Base temperatu		е ,		°F. yields	,	HDD base65	for TRM:		mbly
Base temperatu	ire for cooling c	legree days:	70	°F. yields	342	CDD base70	for TRM:	AC with	Gas Heat
Present Schedu						Dropood Cok	edule for Occu	mind/Day UV	C cotro into
Day of week	-	Start	End	Hours		Day of week	Start	End	Hours
Sun		12:00 AM	12:00 AM	HOUIS		1	12:00 AM	12:00 AM	HOUIS
Mon		9:00 AM	5:00 PM	- 8.0		1	9:00 AM	5:00 PM	- 8.0
Tue		9:00 AM 9:00 AM	5:00 PM	8.0 8.0		2	9:00 AM 9:00 AM	5:00 PM	8.0
Wed		9:00 AM	5:00 PM	8.0 8.0		5 4	9:00 AM	5:00 PM	8.0
Thu		9:00 AM	5:00 PM	8.0		5	9:00 AM	5:00 PM	8.0
Fri		9:00 AM	5:00 PM	8.0		6	9:00 AM	5:00 PM	8.0
Sat		12:00 AM	12:00 AM	-		7	12:00 AM	12:00 AM	-
White Plains, 40	-	-12.00 AM	12.00 AM	40.0	-	, White Plains,		12.00 AW	40.0
				120.0					10.0

40.0 128.0

Page 42

ESTIMATE OF BUILDING LOAD COEFFICIENT & TRUE-UP TO BILLED ENERGY USE

Town of Pound Ridge - Town House 179 Westchester Ave. Pound Ridge, NY 10576

Building Information Width (typical) 54 feet Building Floor Area 6,420 sq. ft. Equivalent Length 60 feet Roof Area 3,589 sq. ft. Number of Floors 2.0 floors Gross Wall Area 4,086 sq. ft. 57,780 cubic feet 9 feet per floor Building Volume Avg. Floor to Floor Height 6 feet in 12' run Roof or Ceiling rise is

						UxA	% of BLC
<u>Surface</u>			Area	<u>R-value</u>	<u>U Factor</u>	<u>Btuh/deg. F.</u>	w/o ventilation
Roof	n/a		3,589	10.0	0.100	359	17%
Walls	85.6%	of GWA	3,497	3.7	0.272	950	44%
Glazing 1	2.3%	of GWA	96	2.0	0.500	48	2%
Glazing 2	10.0%	of GWA	409	0.9	1.111	454	21%
Doors 1	4	3x7 doors	84	2.0	0.500	42	2%
Doors 2	0	3x7 doors	0	1.7	0.588	0	0%
	Total Exterio	r Surface Area	7,675	sq.ft.		1,853	86%

Estimate of Conductive Heat Loss

		ACH	equiv. cfm	Btuh/deg. F.	BLC (without ventilation)			
Est. Infiltration Rate	Occupied	0.30	289	312	1,840 Btuh/deg. F. Occupied			
Est. Infiltration Rate	Unoccupied	0.30	289	312	2,165 Btuh/deg. F. Unoccupied			
		cfm	Fraction	Btuh/deg. F.	Total BLC with Ventilation			
Est. Ventilation Rate	Occupied	0	100%	0	1,840 Btuh/deg. F. Occupied			
Est. Ventilation Rate	Unoccupied		100%	0	2,165 Btuh/deg. F. Unoccupied			

Heat Gain Estimation

Estimated Solar Gain	15%of building heat loss during occupied periods will be met by solar gainskW # People Total BTUH Hours/wk.Occupied11.82044,98840.0								
		kW	# People	Total BTUH	Hours/wk.				
Loads & People	Occupied	11.8	20	44,988	40.0				
	Unoccupied	4.7	0	16,075	128.0				

Heat Loss Study - continued Town of Pound Ridge - Town House **Fuel Data** Cooling Heating Economizer? 179 Westchester Ave. Type: Oil - No. 2 Electricity Pound Ridge, NY 10576 Units: kwh 0.0 gal. Current Unit cost: \$ 3.443 \$ 0.114 BTU/unit Heating T Setpoint: Occupied 70 deg. F. 138,000 3,412 Unoccupied 70 deg. F. Nom. Eff, COP 0.85 2.638 COP 74 Avg. Eff, COP 0.78 2.64 Avg. COP Cooling T Setpoint: Occupied deg. F. Unoccupied 74 deg. F. 9.0 Avg. EER **HVAC Schedule** 100% of bldg. cooled Occupied 40 Hrs. per week Unoccupied 128 Hrs. per week **DOAS Energy Use** Q internal gains: Occupied 44,988 Btuh 0 cfm Unoccupied 16,075 Btuh 0% heat recov. Eff. Q internal gains: Schedule 40 Hrs. per week Heating 0 BLC: Occupied 1,840 Btuh/deg. F. 0 Unoccupied 2,165 Btuh/deg. F. 0% eff. 0.00 COP cool Current White Plains, 40 hrs./week 0 hrs/week Unocc Net Occupied Unoccupied Occ Net Heat Heating Fuel Cooling **DOAS Heating** Bin Mid Pt. **DOAS Hours** Heat Loss Hours Hours Loss BTUH Use gal. Energy kwh kBtu/yr. BTUH 2.5 0 17 79,245 130,081 21 0 0 0 2 70<u>,</u>043 47 0 0 0 7.5 41 119,255 12.5 6 84 60,840 108,429 88 0 0 0 17.5 39 179 97,602 181 0 0 0 51,638 22.5 52 421 42,436 86,776 360 0 0 0 27.5 97 332 75,949 264 0 0 0 33,233 142 0 0 32.5 509 24,031 65,123 340 0 148 299 0 0 0 37.5 553 14,828 54,297 43,470 117 273 0 0 0 42.5 661 5,626 32,644 0 0 47.5 179 685 208 0 0 52.5 136 457 (5,417) 21,817 93 82 0 0 10,991 0 0 57.5 196 615 (14,620) 63 318 62.5 214 834 0 0 (23,822) 165 1 567 220 0 0 0 67.5 626 (2,001)947 (33,025) 72.5 225 326 (44,303) (14,903)0 1,648 0 0 0 0 0 77.5 152 182 (54,118) (26,342) 1,447 1,179 100 0 0 0 113 (37,515) 82.5 (63,667) 0 0 0 87.5 42 29 (74,877) (50,349) 512 92.5 18 (84,019) (61, 115)0 209 0 0 6 0 97.5 3 2 (93,386) (72, 106)0 47 0 102.5 0 0 0 0 0 0 (97,442) (77, 786)0 0 0 0 0 107.5 (106, 644)(88,612) 0 112.5 0 0 (115,847) (99, 438)0 0 0 0 117.5 0 0 (125,049) (110,265) 0 0 0 0 8,760 hours 2,237 6,955 DOAS fuel use 0 DOAS cool use 0

Cross Check Against Historic Consumption

	Historic	Calculated	Difference
Present Annual Heating Fuel Use is	308 mmBTU	309	100% of present fuel use

Page 44

Appendix E

Clean Heating and Cooling Technology Overview

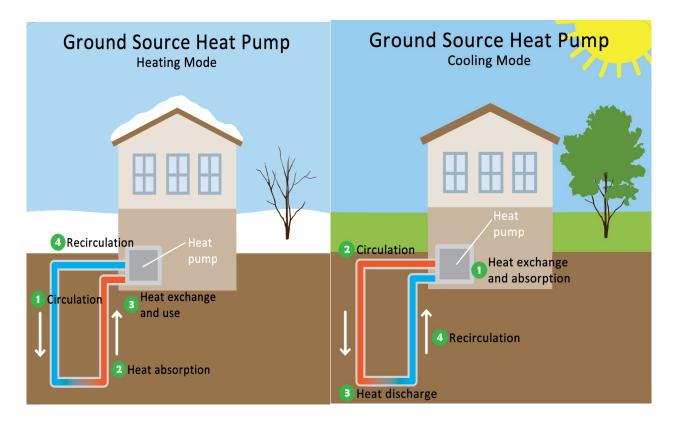
BENEFITS OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

Commercial building owners are becoming increasing aware of how their choice of HVAC system impacts bottom line operating costs and the environment. Most conventional heating systems either burn fuel or convert electricity into heat. CHC technologies, such as heat pumps, are different because they don't generate heat. Instead, they move existing heat energy from outside into your facility, which makes them more efficient since they deliver more heat energy than the electrical energy they consume.

There are many compelling reasons to install a CHC System in commercial buildings.

CHC systems:

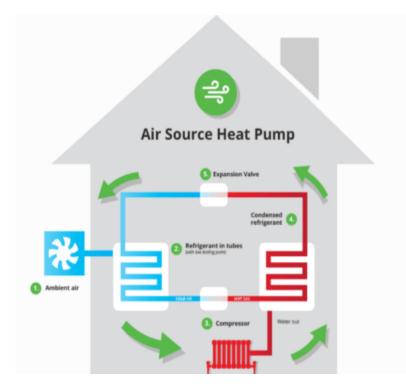
- Can cost less to run than a traditional fossil fuel heating system.
- Integrate well with renewable and resilient building designs
- Offer the highest efficiency and most cost-effective space conditioning for HVAC
- Offer reduced maintenance costs because the exterior equipment is buried underground
- Offers flexible design and installation with many configurations available.
- Provides superior thermal comfort for all seasons.


TYPES OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

What is a Ground Source Heat Pump (GSHP)?

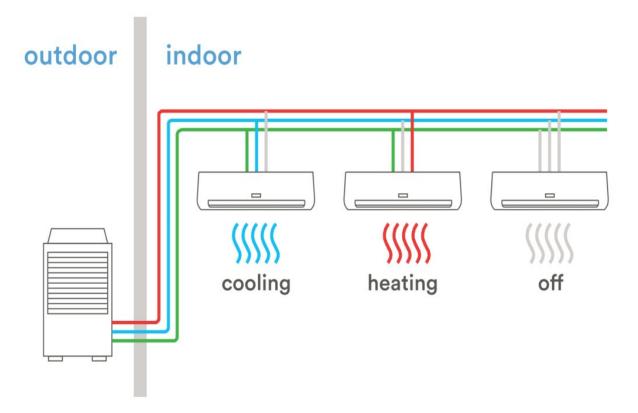
GSHP's are self-contained electrically powered systems that provide heating and cooling more efficiently than other types of conventional HVAC systems. This increase in efficiency is obtained due to the GSHP systems coupling with the earth's relatively stable ground temperature. For example, while the temperature of the of the outside air may vary drastically from summer to winter, the ground temperature remains relatively stable, making it an ideal heat "source" for heating and heat "sink" for cooling.

The GSHP system utilizes an electric vapor compression refrigeration cycle to exchange energy between the building load and a ground coupled loop. When in heating mode, energy is transferred from the low temperature ground loop source to the higher temperature heat sink (the load).


The system reverses during cooling, where the energy is absorbed by the ground loop.

Source: https://www.epa.gov/rhc/geothermal-heating-and-cooling-technologies

What is an Air Source Heat Pump (ASHP)?


An air source heat pump works much like a refrigerator operating in reverse. Outside air is blown over a network of tubes filled with a refrigerant. This warms up the refrigerant, and it turns from a liquid into a gas. This gas passes through a compressor, which increases the pressure. Compression also adds more heat – similar to how the air hose warms up when you top up the air pressure in your tires. The compressed, hot gases pass into a heat exchanger, surrounded by cool air or water. The refrigerant transfers its heat to this cool air or water, making it warm. And this is circulated around your facility to provide heating and hot water. Meanwhile, the refrigerant condenses back into a cool liquid and starts the cycle all over again.

Source: <u>https://www.ways2gogreenblog.com/2017/10/18/a-brief-introduction-to-air-source-heat-pumps/</u>

What is a Variable Refrigerant Flow (VRF)?

VRF systems use heat pumps or heat recovery systems to provide heating and cooling for all indoor and outdoor units without the use of air ducts. With a VRF system, your building will have multiple indoor units utilized by a single outdoor condensing unit, either with a heat pump or heat recovery system. A VRF HVAC system can heat and cool different zones or rooms within a building at the same time. If the appropriate VRF system is selected, building occupants have the ability to customize the temperature settings to their personal preferences. VRF equipment can be used in conjunction with a wide range of heating and cooling products. This means that a VRF system can be scaled to meet the climate control needs.

Source: <u>https://be-exchange.org/tech_primer/tech-primer-variable-refrigerant-flow-vrf-</u> systems/

Appendix F

Energy Savings Summaries

Energy Efficiency Measures		GHG	Electric Savings			Fuel Savings			\$ Savings & Cost				
EEM #	Measure Status	EEM Category	EEM Description	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Lighting	Interior Lighting Retrofit	5,655	6,914	4.5	\$ 1,376	Oil - No. 2	(14.5)	(\$ 362)	\$ 1,014	\$ 5,518	5.4
EEM-2	R	Lighting	Exterior Lighting Retrofit	41	35	0.0	\$ 4		0.0	\$0	\$ 4	\$ 42	10.6
EEM-3	R	Controls	Improve Temperature Control	9,162	773	0.0	\$ 88	Oil - No. 2	50.7	\$ 1,266	\$ 1,354	\$ 2,700	2.0
EEM-4	RS	Envelope	Insulate Building Envelope	30,690	432	0.0	\$ 49	Oil - No. 2	185.3	\$ 4,623	\$ 4,673	\$ 52,918	11.3
EEM-5	RS	Envelope	Install Double Glazing	13,979	0	0.0	(\$ 206)	Oil - No. 2	85.8	\$ 2,141	\$ 1,935	\$ 36,774	19.0
EEM-6	NR	HVAC	Install Duct Insulation	221	190	0.0	\$ 22		0.0	\$0	\$ 22	\$ 1,200	55.3
EEM-7	R	HVAC	Insulate Heating And Domestic Hot Water Pipes	868	0	0.0	\$0	Oil - No. 2	5.3	\$ 133	\$ 133	\$ 349	2.6
EEM-8	R	Motors	Install Motor Controls	1,765	1,521	0.0	\$ 173		0.0	\$0	\$ 173	\$ 300	1.7
EEM-9	NR	HVAC	Replace Condensing Units	2,990	2,578	3.1	\$ 463		0.0	\$0	\$ 463	\$ 19,000	41.0
EEM-10	ME	HVAC	Install A More Efficient Boiler	12,387	0	0.0	\$0	Oil - No. 2	76.0	\$ 1,897	\$ 1,897	\$ 15,000	7.9
			Total of Recommended Measures:	17,491	9,243	4.5	\$ 1,642		41.5	\$ 1,037	\$ 2,678	\$ 8,909	3.3

Building Electrification Measures				Savings & Cost									
EEM #	Measure Status	EEM Category	Building Electrification Measure Descriptions	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Savings	Fuel Cost Savings	Total Annual Savings	Install Costs	Simple Payback (years)
BE-1	R	DHW	Install A Tankless Water Heater	3,725	(3,301)	(1.5)	(\$ 567)	Oil - No. 2	46.4	\$ 1,157	\$ 590	\$ 1,000	1.7
BE-2	RME	ASHP	Install Clean Heating System - Air Source Heat Pump	20,812	(25,408)	2.2	(\$ 3,508)	Oil - No. 2	308.7	\$ 7,702	\$ 4,194	\$ 47,160	11.2
BE-3	ME	GSHP	Install Clean Heating System - Ground Source Heat Pump	28,128	(15,531)	3.4	(\$ 1,922)	Oil - No. 2	283.3	\$ 7,067	\$ 5,145	\$ 145,730	28.3
	Total of Recommended Measures: 24,537				(28,709)	0.8	(\$ 4,075)	\$ O	355.1	\$ 8,859	\$ 4,784	\$ 48,160	